A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites

ABSTRACT Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial musc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta physiologica Scandinavica 1998-12, Vol.164 (4), p.527-532
Hauptverfasser: HARDER, D.R., ROMAN, R.J., GEBREMEDHIN, D., BIRKS, E.K., LANGE, A.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 4
container_start_page 527
container_title Acta physiologica Scandinavica
container_volume 164
creator HARDER, D.R.
ROMAN, R.J.
GEBREMEDHIN, D.
BIRKS, E.K.
LANGE, A.R.
description ABSTRACT Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial muscle is regulated, to a large extent, by the level of membrane potential. At physiological levels of arterial pressure, cerebral arterial muscle is maintained in an active state owing to membrane depolarization, compared with zero pressure load. As arterial pressure changes, so does membrane potential. The membrane is maintained in a relatively depolarized state because of, in part, inhibition of K+ channel activity. The activity of K+ channels, especially the large conductance Ca2+‐activated K+ channel (KCa) is dependent upon the level of 20‐HETE produced by arterial muscle. As arterial pressure increases, so does cytochrome P450 (P4504A) activity. P4504A enzymes catalyse ω‐hydroxylation of arachidonic acid and formation of 20‐hydroxyeicosatetraenoic acid (20‐HETE). 20‐HETE is a potent inhibitor of KCa which maintains membrane depolarization and muscle cell activation. Astrocytes also metabolize AA via P450 enzymes of the 2C11 gene family to produce epoxyeicosatrienoic acids (EETs). Epoxyeicosatrienoic acids are released from astrocytes by glutamate which ‘spills over’ during neuronal activity. These locally released EETs shunt blood to metabolically active neurones providing substrate to support neuronal function. This short paper will discuss the findings which support the above scenario, the purpose of which is to provide a basis for future studies on the molecular mechanisms through which cerebral blood flow matches metabolism.
doi_str_mv 10.1111/j.1365-201X.1998.tb10702.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69140567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69140567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5628-ccae9eebfd6c95605a9ae0b2209da3aaba5d21ce139a6966e4e4c6eaddafeaa63</originalsourceid><addsrcrecordid>eNqVUV2P0zAQjBDoKAc_AclCiLcEO6md-N6qA65IJziJ4-PN2jgb6uLEPduh7T_gZ-OqVXnGL5Z3ZmfXM1n2itGCpfN2XbBK8Lyk7EfBpGyK2DJa07LYPcpmZ-hxNqOUslzUdfk0exbCOj2rpiwvsgvZNLWs-Sz7syDaDYMbyQbiagt70jtPPP6cLESTyq4n4xS9ieY3ktY615Heui2JjsRVqngw4xUBH9EbsGSYgrZIBhwSMiLZuIhjPCAwdkTvo9Mr7wYkd3NOEy1C66yJGJ5nT3qwAV-c7svs64f399fL_PbzzcfrxW2uuSibXGtAidj2ndCSC8pBAtK2LKnsoAJogXcl08gqCUIKgXOca4HQddAjgKguszdH3Y13DxOGqAYTNFqbtnVTUEKyOeWiTsSrI1F7F4LHXm28GcDvFaPqEINaq4PX6uC1OsSgTjGoXWp-eZoytQN259aT7wl_fcIhaLB98kqb8G-C4JyVNNEWR9rWWNz_xwJqcbdcJErTJI38qGFCxN1ZA_wvlX5Zc_X9042qv31ZvrvntRLVX8geuOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69140567</pqid></control><display><type>article</type><title>A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>HARDER, D.R. ; ROMAN, R.J. ; GEBREMEDHIN, D. ; BIRKS, E.K. ; LANGE, A.R.</creator><creatorcontrib>HARDER, D.R. ; ROMAN, R.J. ; GEBREMEDHIN, D. ; BIRKS, E.K. ; LANGE, A.R.</creatorcontrib><description>ABSTRACT Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial muscle is regulated, to a large extent, by the level of membrane potential. At physiological levels of arterial pressure, cerebral arterial muscle is maintained in an active state owing to membrane depolarization, compared with zero pressure load. As arterial pressure changes, so does membrane potential. The membrane is maintained in a relatively depolarized state because of, in part, inhibition of K+ channel activity. The activity of K+ channels, especially the large conductance Ca2+‐activated K+ channel (KCa) is dependent upon the level of 20‐HETE produced by arterial muscle. As arterial pressure increases, so does cytochrome P450 (P4504A) activity. P4504A enzymes catalyse ω‐hydroxylation of arachidonic acid and formation of 20‐hydroxyeicosatetraenoic acid (20‐HETE). 20‐HETE is a potent inhibitor of KCa which maintains membrane depolarization and muscle cell activation. Astrocytes also metabolize AA via P450 enzymes of the 2C11 gene family to produce epoxyeicosatrienoic acids (EETs). Epoxyeicosatrienoic acids are released from astrocytes by glutamate which ‘spills over’ during neuronal activity. These locally released EETs shunt blood to metabolically active neurones providing substrate to support neuronal function. This short paper will discuss the findings which support the above scenario, the purpose of which is to provide a basis for future studies on the molecular mechanisms through which cerebral blood flow matches metabolism.</description><identifier>ISSN: 0001-6772</identifier><identifier>EISSN: 1365-201X</identifier><identifier>DOI: 10.1111/j.1365-201X.1998.tb10702.x</identifier><identifier>PMID: 9887975</identifier><identifier>CODEN: APSCAX</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; astrocytes ; Biological and medical sciences ; Brain Chemistry - physiology ; Cerebral Arteries - cytology ; Cerebral Arteries - enzymology ; Cerebral Arteries - physiology ; Cerebrovascular Circulation - physiology ; Cytochrome P-450 Enzyme System - metabolism ; cytochrome P450 enzymes ; functional hyperaemia ; Fundamental and applied biological sciences. Psychology ; Hemodynamics. Rheology ; Homeostasis ; Humans ; K+ channel activity ; membrane potential ; Membrane Potentials - physiology ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - enzymology ; Muscle, Smooth, Vascular - physiology ; Vertebrates: cardiovascular system</subject><ispartof>Acta physiologica Scandinavica, 1998-12, Vol.164 (4), p.527-532</ispartof><rights>1998 Scandinavian Physiological Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5628-ccae9eebfd6c95605a9ae0b2209da3aaba5d21ce139a6966e4e4c6eaddafeaa63</citedby><cites>FETCH-LOGICAL-c5628-ccae9eebfd6c95605a9ae0b2209da3aaba5d21ce139a6966e4e4c6eaddafeaa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-201X.1998.tb10702.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-201X.1998.tb10702.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1416,23928,23929,25138,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1655120$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9887975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HARDER, D.R.</creatorcontrib><creatorcontrib>ROMAN, R.J.</creatorcontrib><creatorcontrib>GEBREMEDHIN, D.</creatorcontrib><creatorcontrib>BIRKS, E.K.</creatorcontrib><creatorcontrib>LANGE, A.R.</creatorcontrib><title>A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites</title><title>Acta physiologica Scandinavica</title><addtitle>Acta Physiol Scand</addtitle><description>ABSTRACT Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial muscle is regulated, to a large extent, by the level of membrane potential. At physiological levels of arterial pressure, cerebral arterial muscle is maintained in an active state owing to membrane depolarization, compared with zero pressure load. As arterial pressure changes, so does membrane potential. The membrane is maintained in a relatively depolarized state because of, in part, inhibition of K+ channel activity. The activity of K+ channels, especially the large conductance Ca2+‐activated K+ channel (KCa) is dependent upon the level of 20‐HETE produced by arterial muscle. As arterial pressure increases, so does cytochrome P450 (P4504A) activity. P4504A enzymes catalyse ω‐hydroxylation of arachidonic acid and formation of 20‐hydroxyeicosatetraenoic acid (20‐HETE). 20‐HETE is a potent inhibitor of KCa which maintains membrane depolarization and muscle cell activation. Astrocytes also metabolize AA via P450 enzymes of the 2C11 gene family to produce epoxyeicosatrienoic acids (EETs). Epoxyeicosatrienoic acids are released from astrocytes by glutamate which ‘spills over’ during neuronal activity. These locally released EETs shunt blood to metabolically active neurones providing substrate to support neuronal function. This short paper will discuss the findings which support the above scenario, the purpose of which is to provide a basis for future studies on the molecular mechanisms through which cerebral blood flow matches metabolism.</description><subject>Animals</subject><subject>astrocytes</subject><subject>Biological and medical sciences</subject><subject>Brain Chemistry - physiology</subject><subject>Cerebral Arteries - cytology</subject><subject>Cerebral Arteries - enzymology</subject><subject>Cerebral Arteries - physiology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytochrome P450 enzymes</subject><subject>functional hyperaemia</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hemodynamics. Rheology</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>K+ channel activity</subject><subject>membrane potential</subject><subject>Membrane Potentials - physiology</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - enzymology</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Vertebrates: cardiovascular system</subject><issn>0001-6772</issn><issn>1365-201X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVUV2P0zAQjBDoKAc_AclCiLcEO6md-N6qA65IJziJ4-PN2jgb6uLEPduh7T_gZ-OqVXnGL5Z3ZmfXM1n2itGCpfN2XbBK8Lyk7EfBpGyK2DJa07LYPcpmZ-hxNqOUslzUdfk0exbCOj2rpiwvsgvZNLWs-Sz7syDaDYMbyQbiagt70jtPPP6cLESTyq4n4xS9ieY3ktY615Heui2JjsRVqngw4xUBH9EbsGSYgrZIBhwSMiLZuIhjPCAwdkTvo9Mr7wYkd3NOEy1C66yJGJ5nT3qwAV-c7svs64f399fL_PbzzcfrxW2uuSibXGtAidj2ndCSC8pBAtK2LKnsoAJogXcl08gqCUIKgXOca4HQddAjgKguszdH3Y13DxOGqAYTNFqbtnVTUEKyOeWiTsSrI1F7F4LHXm28GcDvFaPqEINaq4PX6uC1OsSgTjGoXWp-eZoytQN259aT7wl_fcIhaLB98kqb8G-C4JyVNNEWR9rWWNz_xwJqcbdcJErTJI38qGFCxN1ZA_wvlX5Zc_X9042qv31ZvrvntRLVX8geuOY</recordid><startdate>199812</startdate><enddate>199812</enddate><creator>HARDER, D.R.</creator><creator>ROMAN, R.J.</creator><creator>GEBREMEDHIN, D.</creator><creator>BIRKS, E.K.</creator><creator>LANGE, A.R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199812</creationdate><title>A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites</title><author>HARDER, D.R. ; ROMAN, R.J. ; GEBREMEDHIN, D. ; BIRKS, E.K. ; LANGE, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5628-ccae9eebfd6c95605a9ae0b2209da3aaba5d21ce139a6966e4e4c6eaddafeaa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>astrocytes</topic><topic>Biological and medical sciences</topic><topic>Brain Chemistry - physiology</topic><topic>Cerebral Arteries - cytology</topic><topic>Cerebral Arteries - enzymology</topic><topic>Cerebral Arteries - physiology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytochrome P450 enzymes</topic><topic>functional hyperaemia</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hemodynamics. Rheology</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>K+ channel activity</topic><topic>membrane potential</topic><topic>Membrane Potentials - physiology</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - enzymology</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARDER, D.R.</creatorcontrib><creatorcontrib>ROMAN, R.J.</creatorcontrib><creatorcontrib>GEBREMEDHIN, D.</creatorcontrib><creatorcontrib>BIRKS, E.K.</creatorcontrib><creatorcontrib>LANGE, A.R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta physiologica Scandinavica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARDER, D.R.</au><au>ROMAN, R.J.</au><au>GEBREMEDHIN, D.</au><au>BIRKS, E.K.</au><au>LANGE, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites</atitle><jtitle>Acta physiologica Scandinavica</jtitle><addtitle>Acta Physiol Scand</addtitle><date>1998-12</date><risdate>1998</risdate><volume>164</volume><issue>4</issue><spage>527</spage><epage>532</epage><pages>527-532</pages><issn>0001-6772</issn><eissn>1365-201X</eissn><coden>APSCAX</coden><abstract>ABSTRACT Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial muscle is regulated, to a large extent, by the level of membrane potential. At physiological levels of arterial pressure, cerebral arterial muscle is maintained in an active state owing to membrane depolarization, compared with zero pressure load. As arterial pressure changes, so does membrane potential. The membrane is maintained in a relatively depolarized state because of, in part, inhibition of K+ channel activity. The activity of K+ channels, especially the large conductance Ca2+‐activated K+ channel (KCa) is dependent upon the level of 20‐HETE produced by arterial muscle. As arterial pressure increases, so does cytochrome P450 (P4504A) activity. P4504A enzymes catalyse ω‐hydroxylation of arachidonic acid and formation of 20‐hydroxyeicosatetraenoic acid (20‐HETE). 20‐HETE is a potent inhibitor of KCa which maintains membrane depolarization and muscle cell activation. Astrocytes also metabolize AA via P450 enzymes of the 2C11 gene family to produce epoxyeicosatrienoic acids (EETs). Epoxyeicosatrienoic acids are released from astrocytes by glutamate which ‘spills over’ during neuronal activity. These locally released EETs shunt blood to metabolically active neurones providing substrate to support neuronal function. This short paper will discuss the findings which support the above scenario, the purpose of which is to provide a basis for future studies on the molecular mechanisms through which cerebral blood flow matches metabolism.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>9887975</pmid><doi>10.1111/j.1365-201X.1998.tb10702.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-6772
ispartof Acta physiologica Scandinavica, 1998-12, Vol.164 (4), p.527-532
issn 0001-6772
1365-201X
language eng
recordid cdi_proquest_miscellaneous_69140567
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
astrocytes
Biological and medical sciences
Brain Chemistry - physiology
Cerebral Arteries - cytology
Cerebral Arteries - enzymology
Cerebral Arteries - physiology
Cerebrovascular Circulation - physiology
Cytochrome P-450 Enzyme System - metabolism
cytochrome P450 enzymes
functional hyperaemia
Fundamental and applied biological sciences. Psychology
Hemodynamics. Rheology
Homeostasis
Humans
K+ channel activity
membrane potential
Membrane Potentials - physiology
Muscle, Smooth, Vascular - cytology
Muscle, Smooth, Vascular - enzymology
Muscle, Smooth, Vascular - physiology
Vertebrates: cardiovascular system
title A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20common%20pathway%20for%20regulation%20of%20nutritive%20blood%20flow%20to%20the%20brain:%20arterial%20muscle%20membrane%20potential%20and%20cytochrome%20P450%20metabolites&rft.jtitle=Acta%20physiologica%20Scandinavica&rft.au=HARDER,%20D.R.&rft.date=1998-12&rft.volume=164&rft.issue=4&rft.spage=527&rft.epage=532&rft.pages=527-532&rft.issn=0001-6772&rft.eissn=1365-201X&rft.coden=APSCAX&rft_id=info:doi/10.1111/j.1365-201X.1998.tb10702.x&rft_dat=%3Cproquest_cross%3E69140567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69140567&rft_id=info:pmid/9887975&rfr_iscdi=true