Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl- d-aspartate receptor channels in the hippocampal CA1 region

Brief elevation in postsynaptic calcium in hippocampal CA1 neurons leads to prolonged changes in synaptic strength. The calcium may enter the postsynaptic neuron via different routes, such as voltage-gated calcium channels or glutamate receptor channels of N-methyl- d-aspartate type, and/or be relea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1998-09, Vol.86 (2), p.415-422
Hauptverfasser: Chen, H.-X, Hanse, E, Pananceau, M, Gustafsson, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 2
container_start_page 415
container_title Neuroscience
container_volume 86
creator Chen, H.-X
Hanse, E
Pananceau, M
Gustafsson, B
description Brief elevation in postsynaptic calcium in hippocampal CA1 neurons leads to prolonged changes in synaptic strength. The calcium may enter the postsynaptic neuron via different routes, such as voltage-gated calcium channels or glutamate receptor channels of N-methyl- d-aspartate type, and/or be released from intracellular stores. The manner in which the synapse is altered, leading to the expression of an enhanced/depressed synaptic strength, is still unclear. The present study, performed using whole-cell recording from CA1 pyramidal cells of three- to five-week-old guinea-pigs, shows that postsynaptic depolarization alone, allowing for calcium influx through voltage-gated calcium channels, leads to a synaptic potentiation characterized by an altered time-course of the evoked excitatory synaptic response, an unaltered coefficient of variation of that response and a decreased paired-pulse facilitation likely related to a postsynaptic mechanism. These characteristics contrasted with those of long-term potentiation induced via activation of N-methyl- d-aspartate receptor channels, where the time-course was unaltered, the coefficient of variation was decreased and no change in paired-pulse facilitation was observed. Synapses can thus have mechanistically separate, but co-existent, potentiations of synaptic transmission initiated from separate sources for postsynaptic calcium.
doi_str_mv 10.1016/S0306-4522(98)00042-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69130834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452298000426</els_id><sourcerecordid>17145952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4649eaf80d70c97584571243b1263ba83594c70e9489794e73c3e81ed5923c963</originalsourceid><addsrcrecordid>eNqFkc2OFCEURonRjO3oI0zCwphxUQoFVMHKTNrfZKILdU1o6lY3pgoQqIn9SL6l9HTb21mx-A7fvbkHoStK3lBCu7ffCSNdw0XbXiv5mhDC26Z7hFZU9qzpBeeP0eqMPEXPcv5VISI4u0AXSkoqRbdCf9-7XJy3BcOfmCBnF3zGY0g4772JxVkcQwFfnCk1ws4Pi4UBb_bYmsm6ZcZll8Ky3eG7MBWzhWZrSgX-p8YP-GszQ9ntpwYPjcnRpFIRnMBCLHWS3RnvYcq1vJYB3rkYgzVzNBNe39AKbuvo5-jJaKYML07vJfr58cOP9efm9tunL-ub28bylpSGd1yBGSUZemJVLyQXPW0529C2YxsjmVDc9gQUl6pXHHpmGUgKg1Ats6pjl-jVsTem8HuBXPTssoVpMh7CknWnKCOS8QdB2lMulGgrKI6gTSHnBKOOyc0m7TUl-uBS37vUB1FaSX3vUh82uToNWDYzDOdfJ3k1f3nKTa7nHpPx1uUz1jKqBOsr9u6I1RPDnYOks3Xgq0VXFRQ9BPfAIv8Agpu9Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17145952</pqid></control><display><type>article</type><title>Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl- d-aspartate receptor channels in the hippocampal CA1 region</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, H.-X ; Hanse, E ; Pananceau, M ; Gustafsson, B</creator><creatorcontrib>Chen, H.-X ; Hanse, E ; Pananceau, M ; Gustafsson, B</creatorcontrib><description>Brief elevation in postsynaptic calcium in hippocampal CA1 neurons leads to prolonged changes in synaptic strength. The calcium may enter the postsynaptic neuron via different routes, such as voltage-gated calcium channels or glutamate receptor channels of N-methyl- d-aspartate type, and/or be released from intracellular stores. The manner in which the synapse is altered, leading to the expression of an enhanced/depressed synaptic strength, is still unclear. The present study, performed using whole-cell recording from CA1 pyramidal cells of three- to five-week-old guinea-pigs, shows that postsynaptic depolarization alone, allowing for calcium influx through voltage-gated calcium channels, leads to a synaptic potentiation characterized by an altered time-course of the evoked excitatory synaptic response, an unaltered coefficient of variation of that response and a decreased paired-pulse facilitation likely related to a postsynaptic mechanism. These characteristics contrasted with those of long-term potentiation induced via activation of N-methyl- d-aspartate receptor channels, where the time-course was unaltered, the coefficient of variation was decreased and no change in paired-pulse facilitation was observed. Synapses can thus have mechanistically separate, but co-existent, potentiations of synaptic transmission initiated from separate sources for postsynaptic calcium.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/S0306-4522(98)00042-6</identifier><identifier>PMID: 9881856</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; calcium ; Calcium - pharmacology ; Calcium - physiology ; Calcium Channels - physiology ; Central nervous system ; Electrophysiology ; Evoked Potentials - drug effects ; Evoked Potentials - physiology ; Fundamental and applied biological sciences. Psychology ; Guinea Pigs ; hippocampus ; Hippocampus - physiology ; In Vitro Techniques ; long-term potentiation ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - physiology ; Pyramidal Cells - drug effects ; Pyramidal Cells - physiology ; Receptors, N-Methyl-D-Aspartate - drug effects ; Receptors, N-Methyl-D-Aspartate - physiology ; Synapses - drug effects ; Synapses - physiology ; synaptic plasticity ; Vertebrates: nervous system and sense organs ; voltage-gated calcium channels</subject><ispartof>Neuroscience, 1998-09, Vol.86 (2), p.415-422</ispartof><rights>1998 IBRO</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-4649eaf80d70c97584571243b1263ba83594c70e9489794e73c3e81ed5923c963</citedby><cites>FETCH-LOGICAL-c420t-4649eaf80d70c97584571243b1263ba83594c70e9489794e73c3e81ed5923c963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0306-4522(98)00042-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2319537$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9881856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, H.-X</creatorcontrib><creatorcontrib>Hanse, E</creatorcontrib><creatorcontrib>Pananceau, M</creatorcontrib><creatorcontrib>Gustafsson, B</creatorcontrib><title>Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl- d-aspartate receptor channels in the hippocampal CA1 region</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Brief elevation in postsynaptic calcium in hippocampal CA1 neurons leads to prolonged changes in synaptic strength. The calcium may enter the postsynaptic neuron via different routes, such as voltage-gated calcium channels or glutamate receptor channels of N-methyl- d-aspartate type, and/or be released from intracellular stores. The manner in which the synapse is altered, leading to the expression of an enhanced/depressed synaptic strength, is still unclear. The present study, performed using whole-cell recording from CA1 pyramidal cells of three- to five-week-old guinea-pigs, shows that postsynaptic depolarization alone, allowing for calcium influx through voltage-gated calcium channels, leads to a synaptic potentiation characterized by an altered time-course of the evoked excitatory synaptic response, an unaltered coefficient of variation of that response and a decreased paired-pulse facilitation likely related to a postsynaptic mechanism. These characteristics contrasted with those of long-term potentiation induced via activation of N-methyl- d-aspartate receptor channels, where the time-course was unaltered, the coefficient of variation was decreased and no change in paired-pulse facilitation was observed. Synapses can thus have mechanistically separate, but co-existent, potentiations of synaptic transmission initiated from separate sources for postsynaptic calcium.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>calcium</subject><subject>Calcium - pharmacology</subject><subject>Calcium - physiology</subject><subject>Calcium Channels - physiology</subject><subject>Central nervous system</subject><subject>Electrophysiology</subject><subject>Evoked Potentials - drug effects</subject><subject>Evoked Potentials - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guinea Pigs</subject><subject>hippocampus</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>long-term potentiation</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - physiology</subject><subject>Pyramidal Cells - drug effects</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - drug effects</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>synaptic plasticity</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>voltage-gated calcium channels</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2OFCEURonRjO3oI0zCwphxUQoFVMHKTNrfZKILdU1o6lY3pgoQqIn9SL6l9HTb21mx-A7fvbkHoStK3lBCu7ffCSNdw0XbXiv5mhDC26Z7hFZU9qzpBeeP0eqMPEXPcv5VISI4u0AXSkoqRbdCf9-7XJy3BcOfmCBnF3zGY0g4772JxVkcQwFfnCk1ws4Pi4UBb_bYmsm6ZcZll8Ky3eG7MBWzhWZrSgX-p8YP-GszQ9ntpwYPjcnRpFIRnMBCLHWS3RnvYcq1vJYB3rkYgzVzNBNe39AKbuvo5-jJaKYML07vJfr58cOP9efm9tunL-ub28bylpSGd1yBGSUZemJVLyQXPW0529C2YxsjmVDc9gQUl6pXHHpmGUgKg1Ats6pjl-jVsTem8HuBXPTssoVpMh7CknWnKCOS8QdB2lMulGgrKI6gTSHnBKOOyc0m7TUl-uBS37vUB1FaSX3vUh82uToNWDYzDOdfJ3k1f3nKTa7nHpPx1uUz1jKqBOsr9u6I1RPDnYOks3Xgq0VXFRQ9BPfAIv8Agpu9Dw</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Chen, H.-X</creator><creator>Hanse, E</creator><creator>Pananceau, M</creator><creator>Gustafsson, B</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>19980901</creationdate><title>Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl- d-aspartate receptor channels in the hippocampal CA1 region</title><author>Chen, H.-X ; Hanse, E ; Pananceau, M ; Gustafsson, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4649eaf80d70c97584571243b1263ba83594c70e9489794e73c3e81ed5923c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>calcium</topic><topic>Calcium - pharmacology</topic><topic>Calcium - physiology</topic><topic>Calcium Channels - physiology</topic><topic>Central nervous system</topic><topic>Electrophysiology</topic><topic>Evoked Potentials - drug effects</topic><topic>Evoked Potentials - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guinea Pigs</topic><topic>hippocampus</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>long-term potentiation</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - physiology</topic><topic>Pyramidal Cells - drug effects</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - drug effects</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>synaptic plasticity</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>voltage-gated calcium channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, H.-X</creatorcontrib><creatorcontrib>Hanse, E</creatorcontrib><creatorcontrib>Pananceau, M</creatorcontrib><creatorcontrib>Gustafsson, B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, H.-X</au><au>Hanse, E</au><au>Pananceau, M</au><au>Gustafsson, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl- d-aspartate receptor channels in the hippocampal CA1 region</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>1998-09-01</date><risdate>1998</risdate><volume>86</volume><issue>2</issue><spage>415</spage><epage>422</epage><pages>415-422</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Brief elevation in postsynaptic calcium in hippocampal CA1 neurons leads to prolonged changes in synaptic strength. The calcium may enter the postsynaptic neuron via different routes, such as voltage-gated calcium channels or glutamate receptor channels of N-methyl- d-aspartate type, and/or be released from intracellular stores. The manner in which the synapse is altered, leading to the expression of an enhanced/depressed synaptic strength, is still unclear. The present study, performed using whole-cell recording from CA1 pyramidal cells of three- to five-week-old guinea-pigs, shows that postsynaptic depolarization alone, allowing for calcium influx through voltage-gated calcium channels, leads to a synaptic potentiation characterized by an altered time-course of the evoked excitatory synaptic response, an unaltered coefficient of variation of that response and a decreased paired-pulse facilitation likely related to a postsynaptic mechanism. These characteristics contrasted with those of long-term potentiation induced via activation of N-methyl- d-aspartate receptor channels, where the time-course was unaltered, the coefficient of variation was decreased and no change in paired-pulse facilitation was observed. Synapses can thus have mechanistically separate, but co-existent, potentiations of synaptic transmission initiated from separate sources for postsynaptic calcium.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>9881856</pmid><doi>10.1016/S0306-4522(98)00042-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 1998-09, Vol.86 (2), p.415-422
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_69130834
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Biological and medical sciences
calcium
Calcium - pharmacology
Calcium - physiology
Calcium Channels - physiology
Central nervous system
Electrophysiology
Evoked Potentials - drug effects
Evoked Potentials - physiology
Fundamental and applied biological sciences. Psychology
Guinea Pigs
hippocampus
Hippocampus - physiology
In Vitro Techniques
long-term potentiation
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
Pyramidal Cells - drug effects
Pyramidal Cells - physiology
Receptors, N-Methyl-D-Aspartate - drug effects
Receptors, N-Methyl-D-Aspartate - physiology
Synapses - drug effects
Synapses - physiology
synaptic plasticity
Vertebrates: nervous system and sense organs
voltage-gated calcium channels
title Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl- d-aspartate receptor channels in the hippocampal CA1 region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20expressions%20for%20synaptic%20potentiation%20induced%20by%20calcium%20through%20voltage-gated%20calcium%20and%20N-methyl-%20d-aspartate%20receptor%20channels%20in%20the%20hippocampal%20CA1%20region&rft.jtitle=Neuroscience&rft.au=Chen,%20H.-X&rft.date=1998-09-01&rft.volume=86&rft.issue=2&rft.spage=415&rft.epage=422&rft.pages=415-422&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/S0306-4522(98)00042-6&rft_dat=%3Cproquest_cross%3E17145952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17145952&rft_id=info:pmid/9881856&rft_els_id=S0306452298000426&rfr_iscdi=true