Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs
Abstract Most part of pH- and temperature-sensitive microspheres used for the controlled delivery of drugs are not biodegradable. Therefore, the aim of this work is to prepare pH- and temperature-sensitive microspheres from biodegradable and biocompatible natural polymers. Pullulan microspheres were...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2008-06, Vol.29 (18), p.2767-2775 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Most part of pH- and temperature-sensitive microspheres used for the controlled delivery of drugs are not biodegradable. Therefore, the aim of this work is to prepare pH- and temperature-sensitive microspheres from biodegradable and biocompatible natural polymers. Pullulan microspheres were prepared by suspension cross-linking with epichlorohydrin of an aqueous solution of the polymer. In order to confer them temperature sensitivity, poly( N -isopropylacrylamide- co -acrylamide) was grafted onto pullulan microspheres. Then, the pH-sensitive units (–COOH) were introduced by reaction between the remaining –OH groups of the pullulan with succinic anhydride. The grafted pullulan microspheres are more hydrophilic than pullulan microspheres, their swelling degree as well as water regain increase significantly. The thermo-sensitivity of the carboxylated microspheres depends to the number and the ionization form (–COOH/–COO− ) of carboxylic groups. At a low exchange capacity (0.35 meq/g), microspheres are thermo-sensitive both in the protonated and deprotonated form of –COOH groups. At a higher exchange capacity (2.25 meq/g), microspheres are almost unswellable in the protonated form and swell extensively in the ionized form (up to 28 times than their dried form) loosing in a great extent the thermo-sensitive properties. In isotonic phosphate buffer pH = 7.4, both thermo-sensitive and pH/thermo-sensitive microspheres possess a phase transition temperature close to that of the human body temperature. Loading and release profiles of lysozyme, taken as a molecular model system, were investigated. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2008.03.025 |