A Comparison of Simple Rheological Parameters and Simulation Data for Zymomonas mobilis Fermentation Broths with High Substrate Loading in a 3-L Bioreactor

Traditionally, as much as 80% or more of an ethanol fermentation broth is water that must be removed. This mixture is not only costly to separate but also produces a large aqueous stream that must then be disposed of or recycled. Integrative approaches to water reduction include increasing the bioma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2008-03, Vol.145 (1-3), p.29-38
Hauptverfasser: Um, Byung-Hwan, Hanley, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditionally, as much as 80% or more of an ethanol fermentation broth is water that must be removed. This mixture is not only costly to separate but also produces a large aqueous stream that must then be disposed of or recycled. Integrative approaches to water reduction include increasing the biomass concentration during fermentation. In this paper, experimental results are presented for the rheological behavior of high-solids enzymatic cellulose hydrolysis and ethanol fermentation for biomass conversion using Solka Floc as the model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20% slurry concentrations with constant enzyme concentrations are performed with a variable speed rotational viscometer (2.0 to 200 rpm) at 40 °C. The viscosities of enzymatic suspension observed were in range of 0.0418 to 0.0144, 0.233 to 0.0348, and 0.292 to 0.0447 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20% initial solids (w/v), respectively. Computational fluid dynamics analysis of bioreactor mixing demonstrates the change in bioreactor mixing with increasing biomass concentration. The portion-loading method is shown to be effective for processing high-solids slurries.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-007-8105-z