Plant disease-resistance proteins and the gene-for-gene concept
More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an a...
Gespeichert in:
Veröffentlicht in: | Trends in biochemical sciences (Amsterdam. Regular ed.) 1998-12, Vol.23 (12), p.454-456 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 12 |
container_start_page | 454 |
container_title | Trends in biochemical sciences (Amsterdam. Regular ed.) |
container_volume | 23 |
creator | Van Der Biezen, Erik A. Jones, Jonathan D.G. |
description | More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation. |
doi_str_mv | 10.1016/S0968-0004(98)01311-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69096921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968000498013115</els_id><sourcerecordid>69096921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotVZ_QmFPoodosptkk1OR4hcUFNRz2E0mGml3a5IK_nuztnjtaQLzTOadB6EpJVeUUHH9QpSQmBDCLpS8JLSiFPMDNKaVKDGrSnGIxv_IMTqJ8ZMQyuuaj9BISSErQcdo9rxsulRYH6GJgANEH1PTGSjWoU_gu1g0nS3SBxTv0AF2fcDDozB9htbpFB25ZhnhbFcn6O3u9nX-gBdP94_zmwU2nKiELSuhAQ6M1YZKWRrSQitbLq1siJPS1QCWOMaM4cLlcKCcVVyUpiot57SaoPPtvznW1wZi0isfDSxzeug3UQuVb1XlfpDWGWKkziDfgib0MQZweh38qgk_mhI9GNZ_hvWgT6tcB8Oa57npbsGmXYH9n9opzf3Ztg9Zx7eHoKPxkGVZH8AkbXu_Z8MvHCuKpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17213407</pqid></control><display><type>article</type><title>Plant disease-resistance proteins and the gene-for-gene concept</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Van Der Biezen, Erik A. ; Jones, Jonathan D.G.</creator><creatorcontrib>Van Der Biezen, Erik A. ; Jones, Jonathan D.G.</creatorcontrib><description>More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation.</description><identifier>ISSN: 0968-0004</identifier><identifier>EISSN: 1362-4326</identifier><identifier>DOI: 10.1016/S0968-0004(98)01311-5</identifier><identifier>PMID: 9868361</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Avr ; Bacteria - genetics ; Bacteria - pathogenicity ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; disease resistance ; Models, Biological ; NB–LRR ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants - genetics ; Plants - microbiology ; Plants - virology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteins - genetics ; Proteins - metabolism ; Pto ; R protein ; Viruses - genetics ; Viruses - pathogenicity</subject><ispartof>Trends in biochemical sciences (Amsterdam. Regular ed.), 1998-12, Vol.23 (12), p.454-456</ispartof><rights>1998 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</citedby><cites>FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0968-0004(98)01311-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9868361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Der Biezen, Erik A.</creatorcontrib><creatorcontrib>Jones, Jonathan D.G.</creatorcontrib><title>Plant disease-resistance proteins and the gene-for-gene concept</title><title>Trends in biochemical sciences (Amsterdam. Regular ed.)</title><addtitle>Trends Biochem Sci</addtitle><description>More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation.</description><subject>Avr</subject><subject>Bacteria - genetics</subject><subject>Bacteria - pathogenicity</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>disease resistance</subject><subject>Models, Biological</subject><subject>NB–LRR</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - genetics</subject><subject>Plants - microbiology</subject><subject>Plants - virology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Pto</subject><subject>R protein</subject><subject>Viruses - genetics</subject><subject>Viruses - pathogenicity</subject><issn>0968-0004</issn><issn>1362-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotVZ_QmFPoodosptkk1OR4hcUFNRz2E0mGml3a5IK_nuztnjtaQLzTOadB6EpJVeUUHH9QpSQmBDCLpS8JLSiFPMDNKaVKDGrSnGIxv_IMTqJ8ZMQyuuaj9BISSErQcdo9rxsulRYH6GJgANEH1PTGSjWoU_gu1g0nS3SBxTv0AF2fcDDozB9htbpFB25ZhnhbFcn6O3u9nX-gBdP94_zmwU2nKiELSuhAQ6M1YZKWRrSQitbLq1siJPS1QCWOMaM4cLlcKCcVVyUpiot57SaoPPtvznW1wZi0isfDSxzeug3UQuVb1XlfpDWGWKkziDfgib0MQZweh38qgk_mhI9GNZ_hvWgT6tcB8Oa57npbsGmXYH9n9opzf3Ztg9Zx7eHoKPxkGVZH8AkbXu_Z8MvHCuKpg</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Van Der Biezen, Erik A.</creator><creator>Jones, Jonathan D.G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19981201</creationdate><title>Plant disease-resistance proteins and the gene-for-gene concept</title><author>Van Der Biezen, Erik A. ; Jones, Jonathan D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Avr</topic><topic>Bacteria - genetics</topic><topic>Bacteria - pathogenicity</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>disease resistance</topic><topic>Models, Biological</topic><topic>NB–LRR</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - genetics</topic><topic>Plants - microbiology</topic><topic>Plants - virology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Pto</topic><topic>R protein</topic><topic>Viruses - genetics</topic><topic>Viruses - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Der Biezen, Erik A.</creatorcontrib><creatorcontrib>Jones, Jonathan D.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Der Biezen, Erik A.</au><au>Jones, Jonathan D.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant disease-resistance proteins and the gene-for-gene concept</atitle><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle><addtitle>Trends Biochem Sci</addtitle><date>1998-12-01</date><risdate>1998</risdate><volume>23</volume><issue>12</issue><spage>454</spage><epage>456</epage><pages>454-456</pages><issn>0968-0004</issn><eissn>1362-4326</eissn><abstract>More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>9868361</pmid><doi>10.1016/S0968-0004(98)01311-5</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0968-0004 |
ispartof | Trends in biochemical sciences (Amsterdam. Regular ed.), 1998-12, Vol.23 (12), p.454-456 |
issn | 0968-0004 1362-4326 |
language | eng |
recordid | cdi_proquest_miscellaneous_69096921 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Avr Bacteria - genetics Bacteria - pathogenicity Bacterial Proteins - genetics Bacterial Proteins - metabolism disease resistance Models, Biological NB–LRR Plant Proteins - genetics Plant Proteins - metabolism Plants - genetics Plants - microbiology Plants - virology Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteins - genetics Proteins - metabolism Pto R protein Viruses - genetics Viruses - pathogenicity |
title | Plant disease-resistance proteins and the gene-for-gene concept |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20disease-resistance%20proteins%20and%20the%20gene-for-gene%20concept&rft.jtitle=Trends%20in%20biochemical%20sciences%20(Amsterdam.%20Regular%20ed.)&rft.au=Van%20Der%20Biezen,%20Erik%20A.&rft.date=1998-12-01&rft.volume=23&rft.issue=12&rft.spage=454&rft.epage=456&rft.pages=454-456&rft.issn=0968-0004&rft.eissn=1362-4326&rft_id=info:doi/10.1016/S0968-0004(98)01311-5&rft_dat=%3Cproquest_cross%3E69096921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17213407&rft_id=info:pmid/9868361&rft_els_id=S0968000498013115&rfr_iscdi=true |