Plant disease-resistance proteins and the gene-for-gene concept

More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biochemical sciences (Amsterdam. Regular ed.) 1998-12, Vol.23 (12), p.454-456
Hauptverfasser: Van Der Biezen, Erik A., Jones, Jonathan D.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 12
container_start_page 454
container_title Trends in biochemical sciences (Amsterdam. Regular ed.)
container_volume 23
creator Van Der Biezen, Erik A.
Jones, Jonathan D.G.
description More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation.
doi_str_mv 10.1016/S0968-0004(98)01311-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69096921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968000498013115</els_id><sourcerecordid>69096921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotVZ_QmFPoodosptkk1OR4hcUFNRz2E0mGml3a5IK_nuztnjtaQLzTOadB6EpJVeUUHH9QpSQmBDCLpS8JLSiFPMDNKaVKDGrSnGIxv_IMTqJ8ZMQyuuaj9BISSErQcdo9rxsulRYH6GJgANEH1PTGSjWoU_gu1g0nS3SBxTv0AF2fcDDozB9htbpFB25ZhnhbFcn6O3u9nX-gBdP94_zmwU2nKiELSuhAQ6M1YZKWRrSQitbLq1siJPS1QCWOMaM4cLlcKCcVVyUpiot57SaoPPtvznW1wZi0isfDSxzeug3UQuVb1XlfpDWGWKkziDfgib0MQZweh38qgk_mhI9GNZ_hvWgT6tcB8Oa57npbsGmXYH9n9opzf3Ztg9Zx7eHoKPxkGVZH8AkbXu_Z8MvHCuKpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17213407</pqid></control><display><type>article</type><title>Plant disease-resistance proteins and the gene-for-gene concept</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Van Der Biezen, Erik A. ; Jones, Jonathan D.G.</creator><creatorcontrib>Van Der Biezen, Erik A. ; Jones, Jonathan D.G.</creatorcontrib><description>More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation.</description><identifier>ISSN: 0968-0004</identifier><identifier>EISSN: 1362-4326</identifier><identifier>DOI: 10.1016/S0968-0004(98)01311-5</identifier><identifier>PMID: 9868361</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Avr ; Bacteria - genetics ; Bacteria - pathogenicity ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; disease resistance ; Models, Biological ; NB–LRR ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants - genetics ; Plants - microbiology ; Plants - virology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteins - genetics ; Proteins - metabolism ; Pto ; R protein ; Viruses - genetics ; Viruses - pathogenicity</subject><ispartof>Trends in biochemical sciences (Amsterdam. Regular ed.), 1998-12, Vol.23 (12), p.454-456</ispartof><rights>1998 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</citedby><cites>FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0968-0004(98)01311-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9868361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Der Biezen, Erik A.</creatorcontrib><creatorcontrib>Jones, Jonathan D.G.</creatorcontrib><title>Plant disease-resistance proteins and the gene-for-gene concept</title><title>Trends in biochemical sciences (Amsterdam. Regular ed.)</title><addtitle>Trends Biochem Sci</addtitle><description>More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation.</description><subject>Avr</subject><subject>Bacteria - genetics</subject><subject>Bacteria - pathogenicity</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>disease resistance</subject><subject>Models, Biological</subject><subject>NB–LRR</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - genetics</subject><subject>Plants - microbiology</subject><subject>Plants - virology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Pto</subject><subject>R protein</subject><subject>Viruses - genetics</subject><subject>Viruses - pathogenicity</subject><issn>0968-0004</issn><issn>1362-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotVZ_QmFPoodosptkk1OR4hcUFNRz2E0mGml3a5IK_nuztnjtaQLzTOadB6EpJVeUUHH9QpSQmBDCLpS8JLSiFPMDNKaVKDGrSnGIxv_IMTqJ8ZMQyuuaj9BISSErQcdo9rxsulRYH6GJgANEH1PTGSjWoU_gu1g0nS3SBxTv0AF2fcDDozB9htbpFB25ZhnhbFcn6O3u9nX-gBdP94_zmwU2nKiELSuhAQ6M1YZKWRrSQitbLq1siJPS1QCWOMaM4cLlcKCcVVyUpiot57SaoPPtvznW1wZi0isfDSxzeug3UQuVb1XlfpDWGWKkziDfgib0MQZweh38qgk_mhI9GNZ_hvWgT6tcB8Oa57npbsGmXYH9n9opzf3Ztg9Zx7eHoKPxkGVZH8AkbXu_Z8MvHCuKpg</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Van Der Biezen, Erik A.</creator><creator>Jones, Jonathan D.G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19981201</creationdate><title>Plant disease-resistance proteins and the gene-for-gene concept</title><author>Van Der Biezen, Erik A. ; Jones, Jonathan D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-d42eae5e447c1882c0beb8b58d8a0f88f7eed0f44cc56f868e9fd9562c32d5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Avr</topic><topic>Bacteria - genetics</topic><topic>Bacteria - pathogenicity</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>disease resistance</topic><topic>Models, Biological</topic><topic>NB–LRR</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - genetics</topic><topic>Plants - microbiology</topic><topic>Plants - virology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Pto</topic><topic>R protein</topic><topic>Viruses - genetics</topic><topic>Viruses - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Der Biezen, Erik A.</creatorcontrib><creatorcontrib>Jones, Jonathan D.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Der Biezen, Erik A.</au><au>Jones, Jonathan D.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant disease-resistance proteins and the gene-for-gene concept</atitle><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle><addtitle>Trends Biochem Sci</addtitle><date>1998-12-01</date><risdate>1998</risdate><volume>23</volume><issue>12</issue><spage>454</spage><epage>456</epage><pages>454-456</pages><issn>0968-0004</issn><eissn>1362-4326</eissn><abstract>More than 50 years ago, Harold Flor, working with flax and the flax rust fungus, defined plant-pathogen interactions genetically, producing the gene-for-gene hypothesis. This classic concept is based on the observation that disease resistance in plants commonly requires two complementary genes: an avirulence (Avr) gene in the pathogen and a matching, resistance (R) gene in the host. The biochemical interpretation of this hypothesis is a receptor-ligand model in which plants activate defence mechanisms upon R-protein-mediated recognition of pathogen-derived Avr products. During pathogen infections of plants that lack corresponding R proteins, Avr products might function as virulence factors, subverting host cellular functions through interactions with plant-encoded pathogenicity targets. In order to combat infection, plants produce R proteins that specifically detect the appearance of Avr products. For example, resistance against viruses involves recognition of the viral coat protein or the viral replicase. R-protein-mediated recognition of Avr products causes activation of host defences, which commonly are associated with calcium fluxes, generation of superoxide and nitric oxide, and localized plant cell death. Pathogens are able to evade recognition when the Avr proteins are lost or mutated. Both pathogen and plant have therefore developed specialized strategies to secure their survival and propagation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>9868361</pmid><doi>10.1016/S0968-0004(98)01311-5</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0968-0004
ispartof Trends in biochemical sciences (Amsterdam. Regular ed.), 1998-12, Vol.23 (12), p.454-456
issn 0968-0004
1362-4326
language eng
recordid cdi_proquest_miscellaneous_69096921
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Avr
Bacteria - genetics
Bacteria - pathogenicity
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
disease resistance
Models, Biological
NB–LRR
Plant Proteins - genetics
Plant Proteins - metabolism
Plants - genetics
Plants - microbiology
Plants - virology
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteins - genetics
Proteins - metabolism
Pto
R protein
Viruses - genetics
Viruses - pathogenicity
title Plant disease-resistance proteins and the gene-for-gene concept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20disease-resistance%20proteins%20and%20the%20gene-for-gene%20concept&rft.jtitle=Trends%20in%20biochemical%20sciences%20(Amsterdam.%20Regular%20ed.)&rft.au=Van%20Der%20Biezen,%20Erik%20A.&rft.date=1998-12-01&rft.volume=23&rft.issue=12&rft.spage=454&rft.epage=456&rft.pages=454-456&rft.issn=0968-0004&rft.eissn=1362-4326&rft_id=info:doi/10.1016/S0968-0004(98)01311-5&rft_dat=%3Cproquest_cross%3E69096921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17213407&rft_id=info:pmid/9868361&rft_els_id=S0968000498013115&rfr_iscdi=true