Gene Expression-Based Molecular Diagnostic System for Malignant Gliomas Is Superior to Histological Diagnosis

Purpose: Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2007-12, Vol.13 (24), p.7341-7356
Hauptverfasser: SHIRAHATA, Mitsuaki, IWAO-KOIZUMI, Kyoko, SAITO, Sakae, UENO, Noriko, ODA, Masashi, HASHIMOTO, Nobuo, TAKAHASHI, Jun A, KATO, Kikuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7356
container_issue 24
container_start_page 7341
container_title Clinical cancer research
container_volume 13
creator SHIRAHATA, Mitsuaki
IWAO-KOIZUMI, Kyoko
SAITO, Sakae
UENO, Noriko
ODA, Masashi
HASHIMOTO, Nobuo
TAKAHASHI, Jun A
KATO, Kikuya
description Purpose: Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. Experimental Design: The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Results: Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Conclusions: Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.
doi_str_mv 10.1158/1078-0432.CCR-06-2789
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69080704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69080704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-15f1b9becc25d3565466e584cefd665477e4f34d8eabf13c76563c2e977634f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqXwE0C-gNRDih1_xUe6lG2lVki0d8vrTHaNknjxJIL--zraLRw52dY8M2O9DyHvObvgXDWfOTNNxaSoL1arHxXTVW0a-4KccqVMJWqtXpb7M3NC3iD-ZIxLzuRrcsIbZqXk-pQMaxiBXv3ZZ0CMaawuPUJL71IPYe59pl-j344Jpxjo_SNOMNAuZXrn-7gd_TjRdR_T4JHeIL2f95BjqU6JXkecUp-2Mfj-eUbEt-RV53uEd8fzjDx8u3pYXVe339c3qy-3VVBcTRVXHd_YDYRQq1YoraTWoBoZoGt1eRkDshOybcBvOi6C0UqLUIM1RotSOSOfDmP3Of2aASc3RAzQ936ENKPTljXMlGD-B3JrG2ulLaA6gCEnxAyd2-c4-PzoOHOLD7dk7ZasXfHhmHaLj9L34bhg3gzQ_us6CijAxyPgsUTVZT-GiH-5mjGhbbP89PzA7eJ29ztmcKGQkIs28DnsHBeuls4IycUTU-uiVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19989949</pqid></control><display><type>article</type><title>Gene Expression-Based Molecular Diagnostic System for Malignant Gliomas Is Superior to Histological Diagnosis</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>SHIRAHATA, Mitsuaki ; IWAO-KOIZUMI, Kyoko ; SAITO, Sakae ; UENO, Noriko ; ODA, Masashi ; HASHIMOTO, Nobuo ; TAKAHASHI, Jun A ; KATO, Kikuya</creator><creatorcontrib>SHIRAHATA, Mitsuaki ; IWAO-KOIZUMI, Kyoko ; SAITO, Sakae ; UENO, Noriko ; ODA, Masashi ; HASHIMOTO, Nobuo ; TAKAHASHI, Jun A ; KATO, Kikuya</creatorcontrib><description>Purpose: Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. Experimental Design: The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Results: Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Conclusions: Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-06-2789</identifier><identifier>PMID: 18094416</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Algorithms ; Antineoplastic agents ; Biological and medical sciences ; Brain Neoplasms - classification ; Brain Neoplasms - diagnosis ; Brain Neoplasms - genetics ; Clinical Trials, Phase II as Topic ; Gene Expression ; gene expression profiling ; Gene Expression Profiling - methods ; Glioblastoma - classification ; Glioblastoma - diagnosis ; Glioblastoma - genetics ; Humans ; Kaplan-Meier Estimate ; Loss of Heterozygosity ; malignant glioma ; Medical sciences ; molecular diagnosis ; Neurology ; Oligodendroglioma - diagnosis ; Oligodendroglioma - genetics ; Oligodendroglioma - mortality ; Oligonucleotide Array Sequence Analysis ; Pharmacology. Drug treatments ; Polymerase Chain Reaction ; Prognosis ; Reproducibility of Results ; Sensitivity and Specificity ; Tumors of the nervous system. Phacomatoses</subject><ispartof>Clinical cancer research, 2007-12, Vol.13 (24), p.7341-7356</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-15f1b9becc25d3565466e584cefd665477e4f34d8eabf13c76563c2e977634f3</citedby><cites>FETCH-LOGICAL-c515t-15f1b9becc25d3565466e584cefd665477e4f34d8eabf13c76563c2e977634f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3356,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20036984$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18094416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SHIRAHATA, Mitsuaki</creatorcontrib><creatorcontrib>IWAO-KOIZUMI, Kyoko</creatorcontrib><creatorcontrib>SAITO, Sakae</creatorcontrib><creatorcontrib>UENO, Noriko</creatorcontrib><creatorcontrib>ODA, Masashi</creatorcontrib><creatorcontrib>HASHIMOTO, Nobuo</creatorcontrib><creatorcontrib>TAKAHASHI, Jun A</creatorcontrib><creatorcontrib>KATO, Kikuya</creatorcontrib><title>Gene Expression-Based Molecular Diagnostic System for Malignant Gliomas Is Superior to Histological Diagnosis</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Purpose: Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. Experimental Design: The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Results: Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Conclusions: Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.</description><subject>Algorithms</subject><subject>Antineoplastic agents</subject><subject>Biological and medical sciences</subject><subject>Brain Neoplasms - classification</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - genetics</subject><subject>Clinical Trials, Phase II as Topic</subject><subject>Gene Expression</subject><subject>gene expression profiling</subject><subject>Gene Expression Profiling - methods</subject><subject>Glioblastoma - classification</subject><subject>Glioblastoma - diagnosis</subject><subject>Glioblastoma - genetics</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Loss of Heterozygosity</subject><subject>malignant glioma</subject><subject>Medical sciences</subject><subject>molecular diagnosis</subject><subject>Neurology</subject><subject>Oligodendroglioma - diagnosis</subject><subject>Oligodendroglioma - genetics</subject><subject>Oligodendroglioma - mortality</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pharmacology. Drug treatments</subject><subject>Polymerase Chain Reaction</subject><subject>Prognosis</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tumors of the nervous system. Phacomatoses</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EoqXwE0C-gNRDih1_xUe6lG2lVki0d8vrTHaNknjxJIL--zraLRw52dY8M2O9DyHvObvgXDWfOTNNxaSoL1arHxXTVW0a-4KccqVMJWqtXpb7M3NC3iD-ZIxLzuRrcsIbZqXk-pQMaxiBXv3ZZ0CMaawuPUJL71IPYe59pl-j344Jpxjo_SNOMNAuZXrn-7gd_TjRdR_T4JHeIL2f95BjqU6JXkecUp-2Mfj-eUbEt-RV53uEd8fzjDx8u3pYXVe339c3qy-3VVBcTRVXHd_YDYRQq1YoraTWoBoZoGt1eRkDshOybcBvOi6C0UqLUIM1RotSOSOfDmP3Of2aASc3RAzQ936ENKPTljXMlGD-B3JrG2ulLaA6gCEnxAyd2-c4-PzoOHOLD7dk7ZasXfHhmHaLj9L34bhg3gzQ_us6CijAxyPgsUTVZT-GiH-5mjGhbbP89PzA7eJ29ztmcKGQkIs28DnsHBeuls4IycUTU-uiVQ</recordid><startdate>20071215</startdate><enddate>20071215</enddate><creator>SHIRAHATA, Mitsuaki</creator><creator>IWAO-KOIZUMI, Kyoko</creator><creator>SAITO, Sakae</creator><creator>UENO, Noriko</creator><creator>ODA, Masashi</creator><creator>HASHIMOTO, Nobuo</creator><creator>TAKAHASHI, Jun A</creator><creator>KATO, Kikuya</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20071215</creationdate><title>Gene Expression-Based Molecular Diagnostic System for Malignant Gliomas Is Superior to Histological Diagnosis</title><author>SHIRAHATA, Mitsuaki ; IWAO-KOIZUMI, Kyoko ; SAITO, Sakae ; UENO, Noriko ; ODA, Masashi ; HASHIMOTO, Nobuo ; TAKAHASHI, Jun A ; KATO, Kikuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-15f1b9becc25d3565466e584cefd665477e4f34d8eabf13c76563c2e977634f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Antineoplastic agents</topic><topic>Biological and medical sciences</topic><topic>Brain Neoplasms - classification</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - genetics</topic><topic>Clinical Trials, Phase II as Topic</topic><topic>Gene Expression</topic><topic>gene expression profiling</topic><topic>Gene Expression Profiling - methods</topic><topic>Glioblastoma - classification</topic><topic>Glioblastoma - diagnosis</topic><topic>Glioblastoma - genetics</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Loss of Heterozygosity</topic><topic>malignant glioma</topic><topic>Medical sciences</topic><topic>molecular diagnosis</topic><topic>Neurology</topic><topic>Oligodendroglioma - diagnosis</topic><topic>Oligodendroglioma - genetics</topic><topic>Oligodendroglioma - mortality</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pharmacology. Drug treatments</topic><topic>Polymerase Chain Reaction</topic><topic>Prognosis</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tumors of the nervous system. Phacomatoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHIRAHATA, Mitsuaki</creatorcontrib><creatorcontrib>IWAO-KOIZUMI, Kyoko</creatorcontrib><creatorcontrib>SAITO, Sakae</creatorcontrib><creatorcontrib>UENO, Noriko</creatorcontrib><creatorcontrib>ODA, Masashi</creatorcontrib><creatorcontrib>HASHIMOTO, Nobuo</creatorcontrib><creatorcontrib>TAKAHASHI, Jun A</creatorcontrib><creatorcontrib>KATO, Kikuya</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHIRAHATA, Mitsuaki</au><au>IWAO-KOIZUMI, Kyoko</au><au>SAITO, Sakae</au><au>UENO, Noriko</au><au>ODA, Masashi</au><au>HASHIMOTO, Nobuo</au><au>TAKAHASHI, Jun A</au><au>KATO, Kikuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression-Based Molecular Diagnostic System for Malignant Gliomas Is Superior to Histological Diagnosis</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2007-12-15</date><risdate>2007</risdate><volume>13</volume><issue>24</issue><spage>7341</spage><epage>7356</epage><pages>7341-7356</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Purpose: Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. Experimental Design: The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Results: Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Conclusions: Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>18094416</pmid><doi>10.1158/1078-0432.CCR-06-2789</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2007-12, Vol.13 (24), p.7341-7356
issn 1078-0432
1557-3265
language eng
recordid cdi_proquest_miscellaneous_69080704
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Antineoplastic agents
Biological and medical sciences
Brain Neoplasms - classification
Brain Neoplasms - diagnosis
Brain Neoplasms - genetics
Clinical Trials, Phase II as Topic
Gene Expression
gene expression profiling
Gene Expression Profiling - methods
Glioblastoma - classification
Glioblastoma - diagnosis
Glioblastoma - genetics
Humans
Kaplan-Meier Estimate
Loss of Heterozygosity
malignant glioma
Medical sciences
molecular diagnosis
Neurology
Oligodendroglioma - diagnosis
Oligodendroglioma - genetics
Oligodendroglioma - mortality
Oligonucleotide Array Sequence Analysis
Pharmacology. Drug treatments
Polymerase Chain Reaction
Prognosis
Reproducibility of Results
Sensitivity and Specificity
Tumors of the nervous system. Phacomatoses
title Gene Expression-Based Molecular Diagnostic System for Malignant Gliomas Is Superior to Histological Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression-Based%20Molecular%20Diagnostic%20System%20for%20Malignant%20Gliomas%20Is%20Superior%20to%20Histological%20Diagnosis&rft.jtitle=Clinical%20cancer%20research&rft.au=SHIRAHATA,%20Mitsuaki&rft.date=2007-12-15&rft.volume=13&rft.issue=24&rft.spage=7341&rft.epage=7356&rft.pages=7341-7356&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-06-2789&rft_dat=%3Cproquest_cross%3E69080704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19989949&rft_id=info:pmid/18094416&rfr_iscdi=true