Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis

Accurate experimental data increasingly allow the development of detailed elementary-step mechanisms for complex chemical and biochemical reaction systems. Model reduction techniques are widely applied to obtain representations in lower-dimensional phase space which are more suitable for mathematica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-12, Vol.123 (23), p.234103-234103-10
Hauptverfasser: Shaik, O. S., Kammerer, J., Gorecki, J., Lebiedz, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234103-10
container_issue 23
container_start_page 234103
container_title The Journal of chemical physics
container_volume 123
creator Shaik, O. S.
Kammerer, J.
Gorecki, J.
Lebiedz, D.
description Accurate experimental data increasingly allow the development of detailed elementary-step mechanisms for complex chemical and biochemical reaction systems. Model reduction techniques are widely applied to obtain representations in lower-dimensional phase space which are more suitable for mathematical analysis, efficient numerical simulation, and model-based control tasks. Here, we exploit a recently implemented numerical algorithm for error-controlled computation of the minimum dimension required for a still accurate reduced mechanism based on automatic time scale decomposition and relaxation of fast modes. We determine species contributions to the active (slow) dynamical modes of the reaction system and exploit this information in combination with quasi-steady-state and partial-equilibrium approximations for explicit model reduction of a novel detailed chemical mechanism for the Ru-catalyzed light-sensitive Belousov-Zhabotinsky reaction. The existence of a minimum dimension of seven is demonstrated to be mandatory for the reduced model to show good quantitative consistency with the full model in numerical simulations. We derive such a maximally reduced seven-variable model from the detailed elementary-step mechanism and demonstrate that it reproduces quantitatively accurately the dynamical features of the full model within a given accuracy tolerance.
doi_str_mv 10.1063/1.2136882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69056904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69056904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d4d8980340cfcb6bf563a94057288308e1345b3292c640e2b4e6ce703c9952453</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9ra68A9IVoKLqfma3GQjSKtVKLjRdchkzthIPqZJpnB3_nRT74WuXJxz4PDwLp4XoTeUXFIi-Qd6ySiXSrFnaEeJ0sNeavIc7QhhdNCSyDN0XutvQgjdM_ESnVHJNdOU7NCfayj-wTafE84Ltvh-s6n51j8PgKNPPtqAY54h4KXk2IkZmvUBZgwBIqRmy2GoDVYcwd3Z5GvEdVvXXFpnpgOOtt1BX971JJe3Nfj0C9tkw6H6-gq9WGyo8Pp0L9DPL59_XH0dbr_ffLv6dDs4zlUbZjErrQgXxC1uktMySm61IOOeKcWJAsrFOHGmmZOCAJsESAd7wp3WIxMjv0Dvjrlryfcb1Gairw5CsAnyVk03NvYRHXx_BF3JtRZYzFq6hHIwlJhH3Yaak-7Ovj2FblOE-Yk8-e3AxyNQ3T-nOf0_7akJkxdjzWMT_C8ZvpFe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69056904</pqid></control><display><type>article</type><title>Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Shaik, O. S. ; Kammerer, J. ; Gorecki, J. ; Lebiedz, D.</creator><creatorcontrib>Shaik, O. S. ; Kammerer, J. ; Gorecki, J. ; Lebiedz, D.</creatorcontrib><description>Accurate experimental data increasingly allow the development of detailed elementary-step mechanisms for complex chemical and biochemical reaction systems. Model reduction techniques are widely applied to obtain representations in lower-dimensional phase space which are more suitable for mathematical analysis, efficient numerical simulation, and model-based control tasks. Here, we exploit a recently implemented numerical algorithm for error-controlled computation of the minimum dimension required for a still accurate reduced mechanism based on automatic time scale decomposition and relaxation of fast modes. We determine species contributions to the active (slow) dynamical modes of the reaction system and exploit this information in combination with quasi-steady-state and partial-equilibrium approximations for explicit model reduction of a novel detailed chemical mechanism for the Ru-catalyzed light-sensitive Belousov-Zhabotinsky reaction. The existence of a minimum dimension of seven is demonstrated to be mandatory for the reduced model to show good quantitative consistency with the full model in numerical simulations. We derive such a maximally reduced seven-variable model from the detailed elementary-step mechanism and demonstrate that it reproduces quantitatively accurately the dynamical features of the full model within a given accuracy tolerance.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2136882</identifier><identifier>PMID: 16392910</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2005-12, Vol.123 (23), p.234103-234103-10</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d4d8980340cfcb6bf563a94057288308e1345b3292c640e2b4e6ce703c9952453</citedby><cites>FETCH-LOGICAL-c338t-d4d8980340cfcb6bf563a94057288308e1345b3292c640e2b4e6ce703c9952453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1558,4510,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16392910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaik, O. S.</creatorcontrib><creatorcontrib>Kammerer, J.</creatorcontrib><creatorcontrib>Gorecki, J.</creatorcontrib><creatorcontrib>Lebiedz, D.</creatorcontrib><title>Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Accurate experimental data increasingly allow the development of detailed elementary-step mechanisms for complex chemical and biochemical reaction systems. Model reduction techniques are widely applied to obtain representations in lower-dimensional phase space which are more suitable for mathematical analysis, efficient numerical simulation, and model-based control tasks. Here, we exploit a recently implemented numerical algorithm for error-controlled computation of the minimum dimension required for a still accurate reduced mechanism based on automatic time scale decomposition and relaxation of fast modes. We determine species contributions to the active (slow) dynamical modes of the reaction system and exploit this information in combination with quasi-steady-state and partial-equilibrium approximations for explicit model reduction of a novel detailed chemical mechanism for the Ru-catalyzed light-sensitive Belousov-Zhabotinsky reaction. The existence of a minimum dimension of seven is demonstrated to be mandatory for the reduced model to show good quantitative consistency with the full model in numerical simulations. We derive such a maximally reduced seven-variable model from the detailed elementary-step mechanism and demonstrate that it reproduces quantitatively accurately the dynamical features of the full model within a given accuracy tolerance.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFTEUhoMo9ra68A9IVoKLqfma3GQjSKtVKLjRdchkzthIPqZJpnB3_nRT74WuXJxz4PDwLp4XoTeUXFIi-Qd6ySiXSrFnaEeJ0sNeavIc7QhhdNCSyDN0XutvQgjdM_ESnVHJNdOU7NCfayj-wTafE84Ltvh-s6n51j8PgKNPPtqAY54h4KXk2IkZmvUBZgwBIqRmy2GoDVYcwd3Z5GvEdVvXXFpnpgOOtt1BX971JJe3Nfj0C9tkw6H6-gq9WGyo8Pp0L9DPL59_XH0dbr_ffLv6dDs4zlUbZjErrQgXxC1uktMySm61IOOeKcWJAsrFOHGmmZOCAJsESAd7wp3WIxMjv0Dvjrlryfcb1Gairw5CsAnyVk03NvYRHXx_BF3JtRZYzFq6hHIwlJhH3Yaak-7Ovj2FblOE-Yk8-e3AxyNQ3T-nOf0_7akJkxdjzWMT_C8ZvpFe</recordid><startdate>20051215</startdate><enddate>20051215</enddate><creator>Shaik, O. S.</creator><creator>Kammerer, J.</creator><creator>Gorecki, J.</creator><creator>Lebiedz, D.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051215</creationdate><title>Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis</title><author>Shaik, O. S. ; Kammerer, J. ; Gorecki, J. ; Lebiedz, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d4d8980340cfcb6bf563a94057288308e1345b3292c640e2b4e6ce703c9952453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaik, O. S.</creatorcontrib><creatorcontrib>Kammerer, J.</creatorcontrib><creatorcontrib>Gorecki, J.</creatorcontrib><creatorcontrib>Lebiedz, D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaik, O. S.</au><au>Kammerer, J.</au><au>Gorecki, J.</au><au>Lebiedz, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-12-15</date><risdate>2005</risdate><volume>123</volume><issue>23</issue><spage>234103</spage><epage>234103-10</epage><pages>234103-234103-10</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Accurate experimental data increasingly allow the development of detailed elementary-step mechanisms for complex chemical and biochemical reaction systems. Model reduction techniques are widely applied to obtain representations in lower-dimensional phase space which are more suitable for mathematical analysis, efficient numerical simulation, and model-based control tasks. Here, we exploit a recently implemented numerical algorithm for error-controlled computation of the minimum dimension required for a still accurate reduced mechanism based on automatic time scale decomposition and relaxation of fast modes. We determine species contributions to the active (slow) dynamical modes of the reaction system and exploit this information in combination with quasi-steady-state and partial-equilibrium approximations for explicit model reduction of a novel detailed chemical mechanism for the Ru-catalyzed light-sensitive Belousov-Zhabotinsky reaction. The existence of a minimum dimension of seven is demonstrated to be mandatory for the reduced model to show good quantitative consistency with the full model in numerical simulations. We derive such a maximally reduced seven-variable model from the detailed elementary-step mechanism and demonstrate that it reproduces quantitatively accurately the dynamical features of the full model within a given accuracy tolerance.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>16392910</pmid><doi>10.1063/1.2136882</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-12, Vol.123 (23), p.234103-234103-10
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_69056904
source AIP Journals Complete; AIP Digital Archive
title Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20a%20quantitative%20minimal%20model%20from%20a%20detailed%20elementary-step%20mechanism%20supported%20by%20mathematical%20coupling%20analysis&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Shaik,%20O.%20S.&rft.date=2005-12-15&rft.volume=123&rft.issue=23&rft.spage=234103&rft.epage=234103-10&rft.pages=234103-234103-10&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2136882&rft_dat=%3Cproquest_cross%3E69056904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69056904&rft_id=info:pmid/16392910&rfr_iscdi=true