Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach

In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic beta-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic beta-cells. Imaging experiments performed in MIN6 insulinoma cells express...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2007-12, Vol.293 (6), p.C1924-C1933
Hauptverfasser: Fridlyand, Leonid E, Harbeck, Mark C, Roe, Michael W, Philipson, Louis H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic beta-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic beta-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that cAMP oscillations are differentially regulated by periodic changes in membrane potential and GLP-1. We modeled the interplay of intracellular calcium (Ca(2+)) and its interaction with calmodulin, G protein-coupled receptor activation, adenylyl cyclases (AC), and phosphodiesterases (PDE). Simulations with the model demonstrate that cAMP oscillations are coupled to cytoplasmic Ca(2+) oscillations in the beta-cell. Slow Ca(2+) oscillations (3-4 min(-1)) entrain high-frequency, low-amplitude cAMP oscillations. The model predicts that GLP-1 receptor agonists induce cAMP oscillations in phase with cytoplasmic Ca(2+) oscillations. In contrast, observed antiphasic Ca(2+) and cAMP oscillations can be simulated following combined glucose and tetraethylammonium-induced changes in membrane potential. The model provides additional evidence for a pivotal role for Ca(2+)-dependent AC and PDE activation in coupling of Ca(2+) and cAMP signals. Our results reveal important differences in the effects of glucose/TEA and GLP-1 on cAMP dynamics in MIN6 beta-cells.
ISSN:0363-6143
DOI:10.1152/ajpcell.00555.2006