Development of an AT2-deficient proximal tubule cell line for transport studies

Angiotensin II is a major regulatory peptide for proximal tubule Na+ reabsorption acting through two distinct receptor subtypes: AT1 and AT2. Physiological or pathological roles of AT2 have been difficult to unravel because angiotensin II can affect Na+ transport either directly via AT2 on luminal o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:In vitro cellular & developmental biology. Animal 2007-11, Vol.43 (10), p.352-360
Hauptverfasser: Woost, Philip G, Kolb, Robert J, Chang, Chung-Ho, Finesilver, Margaret, Inagami, Tadashi, Hopfer, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 10
container_start_page 352
container_title In vitro cellular & developmental biology. Animal
container_volume 43
creator Woost, Philip G
Kolb, Robert J
Chang, Chung-Ho
Finesilver, Margaret
Inagami, Tadashi
Hopfer, Ulrich
description Angiotensin II is a major regulatory peptide for proximal tubule Na+ reabsorption acting through two distinct receptor subtypes: AT1 and AT2. Physiological or pathological roles of AT2 have been difficult to unravel because angiotensin II can affect Na+ transport either directly via AT2 on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin–angiotensin systems impart considerable complexity to angiotensin's regulation. A transport-competent, proximal tubule cell model that lacks AT2 is a potentially useful tool to assess cellular angiotensin II regulation. To this end, AT2-receptor-deficient mice were bred with an Immortomouse®, which harbors the thermolabile immortalization gene SV40 large-T antigen (Tag), and AT2-receptor-deficient [AT2 (−/−)], Tag heterozygous [Tag (+/−)] F2 offspring were selected for cell line generation. S1 proximal tubule segments were micro-dissected, and epithelial cell outgrowth was expanded in culture. Cells that formed confluent, electrically resistive monolayers were selected for cryopreservation, and one isolate was extensively characterized for conductance (2 mS/cm2), short-circuit current (Isc; 0.2 μA/cm2), and proximal tubule-specific Na3+ – succinate (ΔIsc=0.8 μA/cm2 at 2 mM succinate) and Na3+ – phosphate cotransport (ΔIsc=3 μA/cm2 at 1 mM phosphate). Light microscopy showed a uniform, cobblestone-shaped monolayer with prominent cilia and brush borders. AT2 receptor functionality, as demonstrated by angiotensin II inhibition of ANF-stimulated cGMP synthesis, was absent in AT2-deficient cells but prominent in wild-type cells. This transport competent cell line in conjunction with corresponding wild type and AT1-deficient lines should help explain angiotensin II signaling relevant to Na+ transport.
doi_str_mv 10.1007/s11626-007-9061-1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69053693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40205833</jstor_id><sourcerecordid>40205833</sourcerecordid><originalsourceid>FETCH-LOGICAL-b335t-767ecadd99a488e391913480a0625d773d1aeffeb9392f31559674797372da4b3</originalsourceid><addsrcrecordid>eNqNkctKxDAUhoMo3h_AhRIQ3EVzmiZpluIdBmaj4C6k01Po0GnGpBV9e1M6KLjRbPKT851bfkJOgF8C5_oqAqhMsSSZ4QoYbJF9kLlgmqvX7aS5BpYpw_fIQYxLno4BtUv2QBslOKh9Mr_Fd2z9eoVdT31NXUevnzNWYd0smvFtHfxHs3It7YdyaJEusG1p23RIax9oH1wX1z70NPZD1WA8Iju1ayMeb-5D8nJ_93zzyGbzh6eb6xkrhZA900rjwlWVMS4vChQGDIi84I6rTFZaiwoc1jWWRpisFiClUTrXRgudVS4vxSG5mOqm-d4GjL1dNXGczXXoh2jT0lIoI_4EwYicS6USeP4LXPohdGkJm-lCSSkKGCmYqEXwMQas7Tqk7wmfFrgdTbGTKXaUoykWUs7ZpvJQrrD6ydi4kIDTCVjG3ofveM4zLgsx7nA1xcvG-w7_0fILZuidpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786553816</pqid></control><display><type>article</type><title>Development of an AT2-deficient proximal tubule cell line for transport studies</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals</source><source>BioOne Complete</source><creator>Woost, Philip G ; Kolb, Robert J ; Chang, Chung-Ho ; Finesilver, Margaret ; Inagami, Tadashi ; Hopfer, Ulrich</creator><contributor>Sato, J. Denry</contributor><creatorcontrib>Woost, Philip G ; Kolb, Robert J ; Chang, Chung-Ho ; Finesilver, Margaret ; Inagami, Tadashi ; Hopfer, Ulrich ; Sato, J. Denry</creatorcontrib><description>Angiotensin II is a major regulatory peptide for proximal tubule Na+ reabsorption acting through two distinct receptor subtypes: AT1 and AT2. Physiological or pathological roles of AT2 have been difficult to unravel because angiotensin II can affect Na+ transport either directly via AT2 on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin–angiotensin systems impart considerable complexity to angiotensin's regulation. A transport-competent, proximal tubule cell model that lacks AT2 is a potentially useful tool to assess cellular angiotensin II regulation. To this end, AT2-receptor-deficient mice were bred with an Immortomouse®, which harbors the thermolabile immortalization gene SV40 large-T antigen (Tag), and AT2-receptor-deficient [AT2 (−/−)], Tag heterozygous [Tag (+/−)] F2 offspring were selected for cell line generation. S1 proximal tubule segments were micro-dissected, and epithelial cell outgrowth was expanded in culture. Cells that formed confluent, electrically resistive monolayers were selected for cryopreservation, and one isolate was extensively characterized for conductance (2 mS/cm2), short-circuit current (Isc; 0.2 μA/cm2), and proximal tubule-specific Na3+ – succinate (ΔIsc=0.8 μA/cm2 at 2 mM succinate) and Na3+ – phosphate cotransport (ΔIsc=3 μA/cm2 at 1 mM phosphate). Light microscopy showed a uniform, cobblestone-shaped monolayer with prominent cilia and brush borders. AT2 receptor functionality, as demonstrated by angiotensin II inhibition of ANF-stimulated cGMP synthesis, was absent in AT2-deficient cells but prominent in wild-type cells. This transport competent cell line in conjunction with corresponding wild type and AT1-deficient lines should help explain angiotensin II signaling relevant to Na+ transport.</description><identifier>ISSN: 1071-2690</identifier><identifier>EISSN: 1543-706X</identifier><identifier>DOI: 10.1007/s11626-007-9061-1</identifier><identifier>PMID: 17963016</identifier><language>eng</language><publisher>Germany: The Society for In Vitro Biology 2007</publisher><subject>Angiotensin ; Angiotensin II ; Angiotensin II - pharmacology ; Animals ; Antibodies ; Antigens ; AT2 ; Biological Transport - drug effects ; Blotting, Southern ; Breeding ; Cell and Tissue Models ; Cell culture ; Cell culture techniques ; Cell Line ; Cell lines ; Cilia ; Circuits ; Cryopreservation ; Cultured cells ; Electrolyte transport ; Electrolytes ; Electrophysiology ; Epithelial cell line ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - enzymology ; Epithelium ; Female ; Genotype ; Guanylate cyclase ; Guanylate Cyclase - metabolism ; Immortalization ; Immortomouse ; Immunoblotting ; Immunohistochemistry ; Interstitial cells ; Kidney Tubules, Proximal - cytology ; Kidney Tubules, Proximal - drug effects ; Kidney Tubules, Proximal - enzymology ; Kidney Tubules, Proximal - metabolism ; Light microscopy ; Male ; Mice ; Monolayers ; Offspring ; Optical microscopy ; Plasma membranes ; Proximal tubule ; Proximal tubules ; Reabsorption ; Receptor, Angiotensin, Type 2 - deficiency ; Receptors ; Renin ; Reverse Transcriptase Polymerase Chain Reaction ; Short circuit currents ; Short-circuit current ; Simian virus 40 ; Sodium ; Wheat Germ Agglutinins - metabolism</subject><ispartof>In vitro cellular &amp; developmental biology. Animal, 2007-11, Vol.43 (10), p.352-360</ispartof><rights>The Society for In Vitro Biology 2007</rights><rights>Copyright 2007 Society for in vitro Biology</rights><rights>The Society for In Vitro Biology 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b335t-767ecadd99a488e391913480a0625d773d1aeffeb9392f31559674797372da4b3</citedby><cites>FETCH-LOGICAL-b335t-767ecadd99a488e391913480a0625d773d1aeffeb9392f31559674797372da4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1007/s11626-007-9061-1$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40205833$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,26955,27901,27902,52338,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17963016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sato, J. Denry</contributor><creatorcontrib>Woost, Philip G</creatorcontrib><creatorcontrib>Kolb, Robert J</creatorcontrib><creatorcontrib>Chang, Chung-Ho</creatorcontrib><creatorcontrib>Finesilver, Margaret</creatorcontrib><creatorcontrib>Inagami, Tadashi</creatorcontrib><creatorcontrib>Hopfer, Ulrich</creatorcontrib><title>Development of an AT2-deficient proximal tubule cell line for transport studies</title><title>In vitro cellular &amp; developmental biology. Animal</title><addtitle>In Vitro Cell Dev Biol Anim</addtitle><description>Angiotensin II is a major regulatory peptide for proximal tubule Na+ reabsorption acting through two distinct receptor subtypes: AT1 and AT2. Physiological or pathological roles of AT2 have been difficult to unravel because angiotensin II can affect Na+ transport either directly via AT2 on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin–angiotensin systems impart considerable complexity to angiotensin's regulation. A transport-competent, proximal tubule cell model that lacks AT2 is a potentially useful tool to assess cellular angiotensin II regulation. To this end, AT2-receptor-deficient mice were bred with an Immortomouse®, which harbors the thermolabile immortalization gene SV40 large-T antigen (Tag), and AT2-receptor-deficient [AT2 (−/−)], Tag heterozygous [Tag (+/−)] F2 offspring were selected for cell line generation. S1 proximal tubule segments were micro-dissected, and epithelial cell outgrowth was expanded in culture. Cells that formed confluent, electrically resistive monolayers were selected for cryopreservation, and one isolate was extensively characterized for conductance (2 mS/cm2), short-circuit current (Isc; 0.2 μA/cm2), and proximal tubule-specific Na3+ – succinate (ΔIsc=0.8 μA/cm2 at 2 mM succinate) and Na3+ – phosphate cotransport (ΔIsc=3 μA/cm2 at 1 mM phosphate). Light microscopy showed a uniform, cobblestone-shaped monolayer with prominent cilia and brush borders. AT2 receptor functionality, as demonstrated by angiotensin II inhibition of ANF-stimulated cGMP synthesis, was absent in AT2-deficient cells but prominent in wild-type cells. This transport competent cell line in conjunction with corresponding wild type and AT1-deficient lines should help explain angiotensin II signaling relevant to Na+ transport.</description><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>AT2</subject><subject>Biological Transport - drug effects</subject><subject>Blotting, Southern</subject><subject>Breeding</subject><subject>Cell and Tissue Models</subject><subject>Cell culture</subject><subject>Cell culture techniques</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cilia</subject><subject>Circuits</subject><subject>Cryopreservation</subject><subject>Cultured cells</subject><subject>Electrolyte transport</subject><subject>Electrolytes</subject><subject>Electrophysiology</subject><subject>Epithelial cell line</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - enzymology</subject><subject>Epithelium</subject><subject>Female</subject><subject>Genotype</subject><subject>Guanylate cyclase</subject><subject>Guanylate Cyclase - metabolism</subject><subject>Immortalization</subject><subject>Immortomouse</subject><subject>Immunoblotting</subject><subject>Immunohistochemistry</subject><subject>Interstitial cells</subject><subject>Kidney Tubules, Proximal - cytology</subject><subject>Kidney Tubules, Proximal - drug effects</subject><subject>Kidney Tubules, Proximal - enzymology</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Light microscopy</subject><subject>Male</subject><subject>Mice</subject><subject>Monolayers</subject><subject>Offspring</subject><subject>Optical microscopy</subject><subject>Plasma membranes</subject><subject>Proximal tubule</subject><subject>Proximal tubules</subject><subject>Reabsorption</subject><subject>Receptor, Angiotensin, Type 2 - deficiency</subject><subject>Receptors</subject><subject>Renin</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Simian virus 40</subject><subject>Sodium</subject><subject>Wheat Germ Agglutinins - metabolism</subject><issn>1071-2690</issn><issn>1543-706X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKxDAUhoMo3h_AhRIQ3EVzmiZpluIdBmaj4C6k01Po0GnGpBV9e1M6KLjRbPKT851bfkJOgF8C5_oqAqhMsSSZ4QoYbJF9kLlgmqvX7aS5BpYpw_fIQYxLno4BtUv2QBslOKh9Mr_Fd2z9eoVdT31NXUevnzNWYd0smvFtHfxHs3It7YdyaJEusG1p23RIax9oH1wX1z70NPZD1WA8Iju1ayMeb-5D8nJ_93zzyGbzh6eb6xkrhZA900rjwlWVMS4vChQGDIi84I6rTFZaiwoc1jWWRpisFiClUTrXRgudVS4vxSG5mOqm-d4GjL1dNXGczXXoh2jT0lIoI_4EwYicS6USeP4LXPohdGkJm-lCSSkKGCmYqEXwMQas7Tqk7wmfFrgdTbGTKXaUoykWUs7ZpvJQrrD6ydi4kIDTCVjG3ofveM4zLgsx7nA1xcvG-w7_0fILZuidpA</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Woost, Philip G</creator><creator>Kolb, Robert J</creator><creator>Chang, Chung-Ho</creator><creator>Finesilver, Margaret</creator><creator>Inagami, Tadashi</creator><creator>Hopfer, Ulrich</creator><general>The Society for In Vitro Biology 2007</general><general>Springer Science + Business Media</general><general>Society for In Vitro Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>200711</creationdate><title>Development of an AT2-deficient proximal tubule cell line for transport studies</title><author>Woost, Philip G ; Kolb, Robert J ; Chang, Chung-Ho ; Finesilver, Margaret ; Inagami, Tadashi ; Hopfer, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b335t-767ecadd99a488e391913480a0625d773d1aeffeb9392f31559674797372da4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>AT2</topic><topic>Biological Transport - drug effects</topic><topic>Blotting, Southern</topic><topic>Breeding</topic><topic>Cell and Tissue Models</topic><topic>Cell culture</topic><topic>Cell culture techniques</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cilia</topic><topic>Circuits</topic><topic>Cryopreservation</topic><topic>Cultured cells</topic><topic>Electrolyte transport</topic><topic>Electrolytes</topic><topic>Electrophysiology</topic><topic>Epithelial cell line</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - enzymology</topic><topic>Epithelium</topic><topic>Female</topic><topic>Genotype</topic><topic>Guanylate cyclase</topic><topic>Guanylate Cyclase - metabolism</topic><topic>Immortalization</topic><topic>Immortomouse</topic><topic>Immunoblotting</topic><topic>Immunohistochemistry</topic><topic>Interstitial cells</topic><topic>Kidney Tubules, Proximal - cytology</topic><topic>Kidney Tubules, Proximal - drug effects</topic><topic>Kidney Tubules, Proximal - enzymology</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Light microscopy</topic><topic>Male</topic><topic>Mice</topic><topic>Monolayers</topic><topic>Offspring</topic><topic>Optical microscopy</topic><topic>Plasma membranes</topic><topic>Proximal tubule</topic><topic>Proximal tubules</topic><topic>Reabsorption</topic><topic>Receptor, Angiotensin, Type 2 - deficiency</topic><topic>Receptors</topic><topic>Renin</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Simian virus 40</topic><topic>Sodium</topic><topic>Wheat Germ Agglutinins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woost, Philip G</creatorcontrib><creatorcontrib>Kolb, Robert J</creatorcontrib><creatorcontrib>Chang, Chung-Ho</creatorcontrib><creatorcontrib>Finesilver, Margaret</creatorcontrib><creatorcontrib>Inagami, Tadashi</creatorcontrib><creatorcontrib>Hopfer, Ulrich</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>In vitro cellular &amp; developmental biology. Animal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woost, Philip G</au><au>Kolb, Robert J</au><au>Chang, Chung-Ho</au><au>Finesilver, Margaret</au><au>Inagami, Tadashi</au><au>Hopfer, Ulrich</au><au>Sato, J. Denry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an AT2-deficient proximal tubule cell line for transport studies</atitle><jtitle>In vitro cellular &amp; developmental biology. Animal</jtitle><addtitle>In Vitro Cell Dev Biol Anim</addtitle><date>2007-11</date><risdate>2007</risdate><volume>43</volume><issue>10</issue><spage>352</spage><epage>360</epage><pages>352-360</pages><issn>1071-2690</issn><eissn>1543-706X</eissn><abstract>Angiotensin II is a major regulatory peptide for proximal tubule Na+ reabsorption acting through two distinct receptor subtypes: AT1 and AT2. Physiological or pathological roles of AT2 have been difficult to unravel because angiotensin II can affect Na+ transport either directly via AT2 on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin–angiotensin systems impart considerable complexity to angiotensin's regulation. A transport-competent, proximal tubule cell model that lacks AT2 is a potentially useful tool to assess cellular angiotensin II regulation. To this end, AT2-receptor-deficient mice were bred with an Immortomouse®, which harbors the thermolabile immortalization gene SV40 large-T antigen (Tag), and AT2-receptor-deficient [AT2 (−/−)], Tag heterozygous [Tag (+/−)] F2 offspring were selected for cell line generation. S1 proximal tubule segments were micro-dissected, and epithelial cell outgrowth was expanded in culture. Cells that formed confluent, electrically resistive monolayers were selected for cryopreservation, and one isolate was extensively characterized for conductance (2 mS/cm2), short-circuit current (Isc; 0.2 μA/cm2), and proximal tubule-specific Na3+ – succinate (ΔIsc=0.8 μA/cm2 at 2 mM succinate) and Na3+ – phosphate cotransport (ΔIsc=3 μA/cm2 at 1 mM phosphate). Light microscopy showed a uniform, cobblestone-shaped monolayer with prominent cilia and brush borders. AT2 receptor functionality, as demonstrated by angiotensin II inhibition of ANF-stimulated cGMP synthesis, was absent in AT2-deficient cells but prominent in wild-type cells. This transport competent cell line in conjunction with corresponding wild type and AT1-deficient lines should help explain angiotensin II signaling relevant to Na+ transport.</abstract><cop>Germany</cop><pub>The Society for In Vitro Biology 2007</pub><pmid>17963016</pmid><doi>10.1007/s11626-007-9061-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1071-2690
ispartof In vitro cellular & developmental biology. Animal, 2007-11, Vol.43 (10), p.352-360
issn 1071-2690
1543-706X
language eng
recordid cdi_proquest_miscellaneous_69053693
source Jstor Complete Legacy; MEDLINE; SpringerLink Journals; BioOne Complete
subjects Angiotensin
Angiotensin II
Angiotensin II - pharmacology
Animals
Antibodies
Antigens
AT2
Biological Transport - drug effects
Blotting, Southern
Breeding
Cell and Tissue Models
Cell culture
Cell culture techniques
Cell Line
Cell lines
Cilia
Circuits
Cryopreservation
Cultured cells
Electrolyte transport
Electrolytes
Electrophysiology
Epithelial cell line
Epithelial cells
Epithelial Cells - cytology
Epithelial Cells - drug effects
Epithelial Cells - enzymology
Epithelium
Female
Genotype
Guanylate cyclase
Guanylate Cyclase - metabolism
Immortalization
Immortomouse
Immunoblotting
Immunohistochemistry
Interstitial cells
Kidney Tubules, Proximal - cytology
Kidney Tubules, Proximal - drug effects
Kidney Tubules, Proximal - enzymology
Kidney Tubules, Proximal - metabolism
Light microscopy
Male
Mice
Monolayers
Offspring
Optical microscopy
Plasma membranes
Proximal tubule
Proximal tubules
Reabsorption
Receptor, Angiotensin, Type 2 - deficiency
Receptors
Renin
Reverse Transcriptase Polymerase Chain Reaction
Short circuit currents
Short-circuit current
Simian virus 40
Sodium
Wheat Germ Agglutinins - metabolism
title Development of an AT2-deficient proximal tubule cell line for transport studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20AT2-deficient%20proximal%20tubule%20cell%20line%20for%20transport%20studies&rft.jtitle=In%20vitro%20cellular%20&%20developmental%20biology.%20Animal&rft.au=Woost,%20Philip%20G&rft.date=2007-11&rft.volume=43&rft.issue=10&rft.spage=352&rft.epage=360&rft.pages=352-360&rft.issn=1071-2690&rft.eissn=1543-706X&rft_id=info:doi/10.1007/s11626-007-9061-1&rft_dat=%3Cjstor_proqu%3E40205833%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786553816&rft_id=info:pmid/17963016&rft_jstor_id=40205833&rfr_iscdi=true