Nonequilibrium quantum phase transition in itinerant electron systems
We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a nonzero electric current. The bias changes the universality class of the second order ferromag...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2005-10, Vol.95 (17), p.177201.1-177201.4, Article 177201 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177201.4 |
---|---|
container_issue | 17 |
container_start_page | 177201.1 |
container_title | Physical review letters |
container_volume | 95 |
creator | FELDMAN, D. E |
description | We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a nonzero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point. |
doi_str_mv | 10.1103/PhysRevLett.95.177201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69047994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69047994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7d6a485690ff227fff2c310504486909807f361e5cbcce822fde4b2e1a5fb8733</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMotlYfQdkbvduaw2azeymlHqCoiF4v2XRCI3toM1mhb2-kCxWGGfj5ZgY-Qq4ZnTNGxf37Zo8f8LOCEOalnDOlOGUnZMqoKlPFWHZKppQKlpaUqgm5QPymlDKeF-dkwnJRiCLPpmT52newG1zjau-GNtkNugtxbjcaIQled-iC67vExQqug5iEBBowwccU9xigxUtyZnWDcDXOGfl6XH4untPV29PL4mGVGiFUSNU611kh85Jay7mysRvBqKRZVsSwLKiyImcgTW0MFJzbNWQ1B6alrQslxIzcHe5ufb8bAEPVOjTQNLqDfsAqHslUWWYRlAfQ-B7Rg6223rXa7ytGqz9_1T9_VSmrg7-4dzM-GOoW1setUVgEbkdAo9GNjTqMwyOnuORKKfELtDl9CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69047994</pqid></control><display><type>article</type><title>Nonequilibrium quantum phase transition in itinerant electron systems</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>FELDMAN, D. E</creator><creatorcontrib>FELDMAN, D. E</creatorcontrib><description>We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a nonzero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.95.177201</identifier><identifier>PMID: 16383864</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; General theory and models of magnetic ordering ; Magnetic properties and materials ; Physics</subject><ispartof>Physical review letters, 2005-10, Vol.95 (17), p.177201.1-177201.4, Article 177201</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7d6a485690ff227fff2c310504486909807f361e5cbcce822fde4b2e1a5fb8733</citedby><cites>FETCH-LOGICAL-c337t-7d6a485690ff227fff2c310504486909807f361e5cbcce822fde4b2e1a5fb8733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17252777$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16383864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FELDMAN, D. E</creatorcontrib><title>Nonequilibrium quantum phase transition in itinerant electron systems</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a nonzero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>General theory and models of magnetic ordering</subject><subject>Magnetic properties and materials</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKAzEQhoMotlYfQdkbvduaw2azeymlHqCoiF4v2XRCI3toM1mhb2-kCxWGGfj5ZgY-Qq4ZnTNGxf37Zo8f8LOCEOalnDOlOGUnZMqoKlPFWHZKppQKlpaUqgm5QPymlDKeF-dkwnJRiCLPpmT52newG1zjau-GNtkNugtxbjcaIQled-iC67vExQqug5iEBBowwccU9xigxUtyZnWDcDXOGfl6XH4untPV29PL4mGVGiFUSNU611kh85Jay7mysRvBqKRZVsSwLKiyImcgTW0MFJzbNWQ1B6alrQslxIzcHe5ufb8bAEPVOjTQNLqDfsAqHslUWWYRlAfQ-B7Rg6223rXa7ytGqz9_1T9_VSmrg7-4dzM-GOoW1setUVgEbkdAo9GNjTqMwyOnuORKKfELtDl9CA</recordid><startdate>20051021</startdate><enddate>20051021</enddate><creator>FELDMAN, D. E</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051021</creationdate><title>Nonequilibrium quantum phase transition in itinerant electron systems</title><author>FELDMAN, D. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7d6a485690ff227fff2c310504486909807f361e5cbcce822fde4b2e1a5fb8733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>General theory and models of magnetic ordering</topic><topic>Magnetic properties and materials</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FELDMAN, D. E</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FELDMAN, D. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium quantum phase transition in itinerant electron systems</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2005-10-21</date><risdate>2005</risdate><volume>95</volume><issue>17</issue><spage>177201.1</spage><epage>177201.4</epage><pages>177201.1-177201.4</pages><artnum>177201</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a nonzero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>16383864</pmid><doi>10.1103/PhysRevLett.95.177201</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2005-10, Vol.95 (17), p.177201.1-177201.4, Article 177201 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_69047994 |
source | APS: American Physical Society E-Journals (Physics) |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Exact sciences and technology General theory and models of magnetic ordering Magnetic properties and materials Physics |
title | Nonequilibrium quantum phase transition in itinerant electron systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20quantum%20phase%20transition%20in%20itinerant%20electron%20systems&rft.jtitle=Physical%20review%20letters&rft.au=FELDMAN,%20D.%20E&rft.date=2005-10-21&rft.volume=95&rft.issue=17&rft.spage=177201.1&rft.epage=177201.4&rft.pages=177201.1-177201.4&rft.artnum=177201&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.95.177201&rft_dat=%3Cproquest_cross%3E69047994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69047994&rft_id=info:pmid/16383864&rfr_iscdi=true |