Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants
Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative s...
Gespeichert in:
Veröffentlicht in: | Planta 2007-12, Vol.227 (1), p.233-243 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 1 |
container_start_page | 233 |
container_title | Planta |
container_volume | 227 |
creator | Zhang, Yi Schläppi, Michael |
description | Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus. We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the plasma membrane to protect the cells during freezing stress. |
doi_str_mv | 10.1007/s00425-007-0611-2 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69041511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23389860</jstor_id><sourcerecordid>23389860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-654f7594304e6d6880bb2ae8f77b2bafcc54d57cd15a29d2d4233bbb4d0bdc403</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYModlv9AD6oQdC30ZtMZpI8lqW1hQVLtc8hkz_bWWYmYzKzdP30ZtjFgi_JhfO7h3M5CL0j8JUA8G8JgNGqyGMBNSEFfYFWhJW0oMDES7QCyDPIsjpD5yntALLI-Wt0RjgXNavFCs3r0FkcXRrDkNq9w1eX95tbgqfD6PDN4e7-LuG2H2PIko_O_WmHLU5z3Ld73eHg8cHpNGHjui5hPVjsQ-zxY7t9dBGHaPNrQj927sllowGPnR6m9Aa98rpL7u3pv0AP11e_1jfF5sf32_XlpjCMVVNRV8zzSrISmKttLQQ0DdVOeM4b2mhvTMVsxY0llabSUstoWTZNwyw01jAoL9CXo28-4Pfs0qT6Ni1Z9eDCnFQtgZGKkAx--g_chTkOOZsSRAjJpFzcyBEyMaQUnVdjbHsdD4qAWgpRx0LUMi6FKJp3PpyM56Z39nnj1EAGPp8AnYzufNSDadMzJyXL5JLw_ZHbpSnEf3o-WEhRL-E-HnWvg9LbmD0eflIgJYAoKRW8_AscMaZT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>818894990</pqid></control><display><type>article</type><title>Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Jstor Complete Legacy</source><creator>Zhang, Yi ; Schläppi, Michael</creator><creatorcontrib>Zhang, Yi ; Schläppi, Michael</creatorcontrib><description>Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus. We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the plasma membrane to protect the cells during freezing stress.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-007-0611-2</identifier><identifier>PMID: 17786468</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Acclimatization ; Amino Acid Sequence ; Antiserum ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; Bacteria ; Biological and medical sciences ; Cell kinetics ; Cell membranes ; Cell physiology ; Cell Wall - metabolism ; Cell walls ; Cold acclimation ; Cysteines ; EARLI1 ; Freezing ; Freezing tolerance ; Fundamental and applied biological sciences. Psychology ; Gels ; Gene Expression Regulation, Plant ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Immunoblotting ; Microbial Viability - genetics ; Molecular Sequence Data ; Plant cells ; Plant physiology and development ; Plants ; Plants, Genetically Modified ; Proteins ; Protoplasts - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; RNA Interference ; Sequence Homology, Amino Acid ; Transgenic plants ; Yeasts ; Yeasts - cytology ; Yeasts - genetics ; Yeasts - physiology</subject><ispartof>Planta, 2007-12, Vol.227 (1), p.233-243</ispartof><rights>Springer-Verlag Berlin Heidelberg 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-654f7594304e6d6880bb2ae8f77b2bafcc54d57cd15a29d2d4233bbb4d0bdc403</citedby><cites>FETCH-LOGICAL-c445t-654f7594304e6d6880bb2ae8f77b2bafcc54d57cd15a29d2d4233bbb4d0bdc403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23389860$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23389860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27926,27927,58019,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19947861$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17786468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Schläppi, Michael</creatorcontrib><title>Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants</title><title>Planta</title><addtitle>Planta</addtitle><description>Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus. We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the plasma membrane to protect the cells during freezing stress.</description><subject>Acclimatization</subject><subject>Amino Acid Sequence</subject><subject>Antiserum</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Cell kinetics</subject><subject>Cell membranes</subject><subject>Cell physiology</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Cold acclimation</subject><subject>Cysteines</subject><subject>EARLI1</subject><subject>Freezing</subject><subject>Freezing tolerance</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Gene Expression Regulation, Plant</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Immunoblotting</subject><subject>Microbial Viability - genetics</subject><subject>Molecular Sequence Data</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Proteins</subject><subject>Protoplasts - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA Interference</subject><subject>Sequence Homology, Amino Acid</subject><subject>Transgenic plants</subject><subject>Yeasts</subject><subject>Yeasts - cytology</subject><subject>Yeasts - genetics</subject><subject>Yeasts - physiology</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkV9rFDEUxYModlv9AD6oQdC30ZtMZpI8lqW1hQVLtc8hkz_bWWYmYzKzdP30ZtjFgi_JhfO7h3M5CL0j8JUA8G8JgNGqyGMBNSEFfYFWhJW0oMDES7QCyDPIsjpD5yntALLI-Wt0RjgXNavFCs3r0FkcXRrDkNq9w1eX95tbgqfD6PDN4e7-LuG2H2PIko_O_WmHLU5z3Ld73eHg8cHpNGHjui5hPVjsQ-zxY7t9dBGHaPNrQj927sllowGPnR6m9Aa98rpL7u3pv0AP11e_1jfF5sf32_XlpjCMVVNRV8zzSrISmKttLQQ0DdVOeM4b2mhvTMVsxY0llabSUstoWTZNwyw01jAoL9CXo28-4Pfs0qT6Ni1Z9eDCnFQtgZGKkAx--g_chTkOOZsSRAjJpFzcyBEyMaQUnVdjbHsdD4qAWgpRx0LUMi6FKJp3PpyM56Z39nnj1EAGPp8AnYzufNSDadMzJyXL5JLw_ZHbpSnEf3o-WEhRL-E-HnWvg9LbmD0eflIgJYAoKRW8_AscMaZT</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Zhang, Yi</creator><creator>Schläppi, Michael</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20071201</creationdate><title>Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants</title><author>Zhang, Yi ; Schläppi, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-654f7594304e6d6880bb2ae8f77b2bafcc54d57cd15a29d2d4233bbb4d0bdc403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acclimatization</topic><topic>Amino Acid Sequence</topic><topic>Antiserum</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Cell kinetics</topic><topic>Cell membranes</topic><topic>Cell physiology</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Cold acclimation</topic><topic>Cysteines</topic><topic>EARLI1</topic><topic>Freezing</topic><topic>Freezing tolerance</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Gene Expression Regulation, Plant</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Immunoblotting</topic><topic>Microbial Viability - genetics</topic><topic>Molecular Sequence Data</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Proteins</topic><topic>Protoplasts - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA Interference</topic><topic>Sequence Homology, Amino Acid</topic><topic>Transgenic plants</topic><topic>Yeasts</topic><topic>Yeasts - cytology</topic><topic>Yeasts - genetics</topic><topic>Yeasts - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Schläppi, Michael</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Schläppi, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>227</volume><issue>1</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus. We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the plasma membrane to protect the cells during freezing stress.</abstract><cop>Berlin</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17786468</pmid><doi>10.1007/s00425-007-0611-2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2007-12, Vol.227 (1), p.233-243 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_69041511 |
source | MEDLINE; SpringerNature Journals; Jstor Complete Legacy |
subjects | Acclimatization Amino Acid Sequence Antiserum Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Bacteria Biological and medical sciences Cell kinetics Cell membranes Cell physiology Cell Wall - metabolism Cell walls Cold acclimation Cysteines EARLI1 Freezing Freezing tolerance Fundamental and applied biological sciences. Psychology Gels Gene Expression Regulation, Plant Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Immunoblotting Microbial Viability - genetics Molecular Sequence Data Plant cells Plant physiology and development Plants Plants, Genetically Modified Proteins Protoplasts - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism RNA Interference Sequence Homology, Amino Acid Transgenic plants Yeasts Yeasts - cytology Yeasts - genetics Yeasts - physiology |
title | Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20responsive%20EARLI1%20type%20HyPRPs%20improve%20freezing%20survival%20of%20yeast%20cells%20and%20form%20higher%20order%20complexes%20in%20plants&rft.jtitle=Planta&rft.au=Zhang,%20Yi&rft.date=2007-12-01&rft.volume=227&rft.issue=1&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-007-0611-2&rft_dat=%3Cjstor_proqu%3E23389860%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=818894990&rft_id=info:pmid/17786468&rft_jstor_id=23389860&rfr_iscdi=true |