Telomere lengthening early in development

Stem cells and cancer cells maintain telomere length mostly through telomerase 1 , 2 , 3 . Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts 3 . How early embryos reset telomere length r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2007-12, Vol.9 (12), p.1436-1441
Hauptverfasser: Liu, Lin, Bailey, Susan M., Okuka, Maja, Muñoz, Purificación, Li, Chao, Zhou, Lingjun, Wu, Chao, Czerwiec, Eva, Sandler, Laurel, Seyfang, Andreas, Blasco, Maria A., Keefe, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1441
container_issue 12
container_start_page 1436
container_title Nature cell biology
container_volume 9
creator Liu, Lin
Bailey, Susan M.
Okuka, Maja
Muñoz, Purificación
Li, Chao
Zhou, Lingjun
Wu, Chao
Czerwiec, Eva
Sandler, Laurel
Seyfang, Andreas
Blasco, Maria A.
Keefe, David L.
description Stem cells and cancer cells maintain telomere length mostly through telomerase 1 , 2 , 3 . Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts 3 . How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.
doi_str_mv 10.1038/ncb1664
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69040090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186689606</galeid><sourcerecordid>A186689606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-408c38134eb2b196bd6f3874bf27f04c47329d22d38755c2d16b45c93d2145213</originalsourceid><addsrcrecordid>eNqF0W1LwzAQAOAgitMp_gMZCuo-dOatSfNxiG8wEHR-Dm16rZU2nUkr-u_N2GBMBEkg4e65g-MQOiF4QjBLrq3JiBB8Bx0QLkXEhVS7y7-II8kUHaBD798xJpxjuY8GRKqEch4foPEc6rYBB6MabNm9ga1sOYLU1d-jyo5y-Az5RQO2O0J7RVp7OF6_Q_R6dzu_eYhmT_ePN9NZZLgkXcRxYlhCGIeMZkSJLBcFSyTPCioLzANiVOWU5iEYx4bmRGQ8NorllPCYEjZEF6u-C9d-9OA73VTeQF2nFtrea6Ewx1jhfyENjkrMAjz7Bd_b3tkwhKaUMkmWd4jOV6hMa9CVLdrOpWbZUU9JIkSiBBZBTf5Q4eTQVKa1UFQhvlUw3ioIpoOvrkx77_Xjy_O2vVxZ41rvHRR64aomdd-aYL1cs16vOcjT9UR91kC-ceu9BnC1Aj6kbAluM_LvXj_yQKoD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222371371</pqid></control><display><type>article</type><title>Telomere lengthening early in development</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Liu, Lin ; Bailey, Susan M. ; Okuka, Maja ; Muñoz, Purificación ; Li, Chao ; Zhou, Lingjun ; Wu, Chao ; Czerwiec, Eva ; Sandler, Laurel ; Seyfang, Andreas ; Blasco, Maria A. ; Keefe, David L.</creator><creatorcontrib>Liu, Lin ; Bailey, Susan M. ; Okuka, Maja ; Muñoz, Purificación ; Li, Chao ; Zhou, Lingjun ; Wu, Chao ; Czerwiec, Eva ; Sandler, Laurel ; Seyfang, Andreas ; Blasco, Maria A. ; Keefe, David L.</creatorcontrib><description>Stem cells and cancer cells maintain telomere length mostly through telomerase 1 , 2 , 3 . Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts 3 . How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1664</identifier><identifier>PMID: 17982445</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; ATP-Binding Cassette Transporters - metabolism ; Biomedical and Life Sciences ; Blastocyst - physiology ; Cancer ; Cancer cells ; Cancer Research ; Cell Biology ; Cell cycle ; Chromosomes ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; Embryo, Mammalian - physiology ; Embryos ; Female ; letter ; Life Sciences ; Male ; Medicine ; Mice ; Oocytes ; Oocytes - physiology ; Parthenogenesis ; Proteins ; Sister Chromatid Exchange ; Sperm ; Stem Cells ; Telomerase ; Telomerase - physiology ; Telomere - physiology ; Telomeres ; Telomeric Repeat Binding Protein 1 - metabolism ; Yeast</subject><ispartof>Nature cell biology, 2007-12, Vol.9 (12), p.1436-1441</ispartof><rights>Springer Nature Limited 2007</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-408c38134eb2b196bd6f3874bf27f04c47329d22d38755c2d16b45c93d2145213</citedby><cites>FETCH-LOGICAL-c471t-408c38134eb2b196bd6f3874bf27f04c47329d22d38755c2d16b45c93d2145213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1664$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1664$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17982445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Bailey, Susan M.</creatorcontrib><creatorcontrib>Okuka, Maja</creatorcontrib><creatorcontrib>Muñoz, Purificación</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Zhou, Lingjun</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Czerwiec, Eva</creatorcontrib><creatorcontrib>Sandler, Laurel</creatorcontrib><creatorcontrib>Seyfang, Andreas</creatorcontrib><creatorcontrib>Blasco, Maria A.</creatorcontrib><creatorcontrib>Keefe, David L.</creatorcontrib><title>Telomere lengthening early in development</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Stem cells and cancer cells maintain telomere length mostly through telomerase 1 , 2 , 3 . Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts 3 . How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.</description><subject>Animals</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Blastocyst - physiology</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>Embryo, Mammalian - physiology</subject><subject>Embryos</subject><subject>Female</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medicine</subject><subject>Mice</subject><subject>Oocytes</subject><subject>Oocytes - physiology</subject><subject>Parthenogenesis</subject><subject>Proteins</subject><subject>Sister Chromatid Exchange</subject><subject>Sperm</subject><subject>Stem Cells</subject><subject>Telomerase</subject><subject>Telomerase - physiology</subject><subject>Telomere - physiology</subject><subject>Telomeres</subject><subject>Telomeric Repeat Binding Protein 1 - metabolism</subject><subject>Yeast</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0W1LwzAQAOAgitMp_gMZCuo-dOatSfNxiG8wEHR-Dm16rZU2nUkr-u_N2GBMBEkg4e65g-MQOiF4QjBLrq3JiBB8Bx0QLkXEhVS7y7-II8kUHaBD798xJpxjuY8GRKqEch4foPEc6rYBB6MabNm9ga1sOYLU1d-jyo5y-Az5RQO2O0J7RVp7OF6_Q_R6dzu_eYhmT_ePN9NZZLgkXcRxYlhCGIeMZkSJLBcFSyTPCioLzANiVOWU5iEYx4bmRGQ8NorllPCYEjZEF6u-C9d-9OA73VTeQF2nFtrea6Ewx1jhfyENjkrMAjz7Bd_b3tkwhKaUMkmWd4jOV6hMa9CVLdrOpWbZUU9JIkSiBBZBTf5Q4eTQVKa1UFQhvlUw3ioIpoOvrkx77_Xjy_O2vVxZ41rvHRR64aomdd-aYL1cs16vOcjT9UR91kC-ceu9BnC1Aj6kbAluM_LvXj_yQKoD</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Liu, Lin</creator><creator>Bailey, Susan M.</creator><creator>Okuka, Maja</creator><creator>Muñoz, Purificación</creator><creator>Li, Chao</creator><creator>Zhou, Lingjun</creator><creator>Wu, Chao</creator><creator>Czerwiec, Eva</creator><creator>Sandler, Laurel</creator><creator>Seyfang, Andreas</creator><creator>Blasco, Maria A.</creator><creator>Keefe, David L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20071201</creationdate><title>Telomere lengthening early in development</title><author>Liu, Lin ; Bailey, Susan M. ; Okuka, Maja ; Muñoz, Purificación ; Li, Chao ; Zhou, Lingjun ; Wu, Chao ; Czerwiec, Eva ; Sandler, Laurel ; Seyfang, Andreas ; Blasco, Maria A. ; Keefe, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-408c38134eb2b196bd6f3874bf27f04c47329d22d38755c2d16b45c93d2145213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Blastocyst - physiology</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>Embryo, Mammalian - physiology</topic><topic>Embryos</topic><topic>Female</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medicine</topic><topic>Mice</topic><topic>Oocytes</topic><topic>Oocytes - physiology</topic><topic>Parthenogenesis</topic><topic>Proteins</topic><topic>Sister Chromatid Exchange</topic><topic>Sperm</topic><topic>Stem Cells</topic><topic>Telomerase</topic><topic>Telomerase - physiology</topic><topic>Telomere - physiology</topic><topic>Telomeres</topic><topic>Telomeric Repeat Binding Protein 1 - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Bailey, Susan M.</creatorcontrib><creatorcontrib>Okuka, Maja</creatorcontrib><creatorcontrib>Muñoz, Purificación</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Zhou, Lingjun</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Czerwiec, Eva</creatorcontrib><creatorcontrib>Sandler, Laurel</creatorcontrib><creatorcontrib>Seyfang, Andreas</creatorcontrib><creatorcontrib>Blasco, Maria A.</creatorcontrib><creatorcontrib>Keefe, David L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lin</au><au>Bailey, Susan M.</au><au>Okuka, Maja</au><au>Muñoz, Purificación</au><au>Li, Chao</au><au>Zhou, Lingjun</au><au>Wu, Chao</au><au>Czerwiec, Eva</au><au>Sandler, Laurel</au><au>Seyfang, Andreas</au><au>Blasco, Maria A.</au><au>Keefe, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telomere lengthening early in development</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>9</volume><issue>12</issue><spage>1436</spage><epage>1441</epage><pages>1436-1441</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Stem cells and cancer cells maintain telomere length mostly through telomerase 1 , 2 , 3 . Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts 3 . How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17982445</pmid><doi>10.1038/ncb1664</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2007-12, Vol.9 (12), p.1436-1441
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_69040090
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Animals
ATP-Binding Cassette Transporters - metabolism
Biomedical and Life Sciences
Blastocyst - physiology
Cancer
Cancer cells
Cancer Research
Cell Biology
Cell cycle
Chromosomes
Deoxyribonucleic acid
Developmental Biology
DNA
Embryo, Mammalian - physiology
Embryos
Female
letter
Life Sciences
Male
Medicine
Mice
Oocytes
Oocytes - physiology
Parthenogenesis
Proteins
Sister Chromatid Exchange
Sperm
Stem Cells
Telomerase
Telomerase - physiology
Telomere - physiology
Telomeres
Telomeric Repeat Binding Protein 1 - metabolism
Yeast
title Telomere lengthening early in development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telomere%20lengthening%20early%20in%20development&rft.jtitle=Nature%20cell%20biology&rft.au=Liu,%20Lin&rft.date=2007-12-01&rft.volume=9&rft.issue=12&rft.spage=1436&rft.epage=1441&rft.pages=1436-1441&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1664&rft_dat=%3Cgale_proqu%3EA186689606%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222371371&rft_id=info:pmid/17982445&rft_galeid=A186689606&rfr_iscdi=true