Pair potentials from diffraction data on liquids: A neural network solution

The inverse theorem of liquids states a one to one correspondence between classical mechanical pair potentials and structural functions. Molecular-dynamics and Monte Carlo simulations provide exact structural functions for known pair interactions. There is no exact or widespread method in the opposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-11, Vol.123 (17), p.174109-174109-8
Hauptverfasser: Tóth, Gergely, Király, Norbert, Vrabecz, Attila
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174109-8
container_issue 17
container_start_page 174109
container_title The Journal of chemical physics
container_volume 123
creator Tóth, Gergely
Király, Norbert
Vrabecz, Attila
description The inverse theorem of liquids states a one to one correspondence between classical mechanical pair potentials and structural functions. Molecular-dynamics and Monte Carlo simulations provide exact structural functions for known pair interactions. There is no exact or widespread method in the opposite direction, where the pair interactions are to be determined from a priori known pair-correlation functions or structure factors. The methods based on the integral equation theories of liquids are approximate and the iterative refinements of pair potentials with simulations take a long time. We applied artificial neural networks to get pair interactions from known structure factors in this study. We performed molecular-dynamics simulations on one-component systems with different pair potentials and the structure factors were calculated. To optimize (train) the weights of neural networks 2000 pair interaction-structure factor pairs were used. The performance of the method was tested on further 200 data pairs. The method provided reasonable potentials for the majority of the systems opening a "quick and dirty" method to determine pair interactions.
doi_str_mv 10.1063/1.2102887
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69039948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69039948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-6416ca3d894de3a99ff0d75e960a0e23e78cad072225a9e1518edd6a2909ad0f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMozji68A9IVoKLjjdJmzYuhGHwhQO60HWITQLRPmaSFPHfmzIFV64OXD4O93wInRNYEuDsmiwpAVpV5QGaE6hEVnIBh2gOQEkmOPAZOgnhEwBISfNjNCOclUVBxBw9vyrn8baPpotONQFb37dYO2u9qqPrO6xVVDhl43aD0-EGr3BnBq-aFPG791849M0woqfoyKYKczblAr3f372tH7PNy8PTerXJ6hzymPGc8FoxXYlcG6aEsBZ0WZj0qAJDmSmrWmkoKaWFEoYUpDJac0UFiHS3bIEu971b3-8GE6JsXahN06jO9EOQaTwTIq8SeLUHa9-H4I2VW-9a5X8kATmak0RO5hJ7MZUOH63Rf-SkKgG3eyDULqpx7_9to1T5J1WOUtkvUId-Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69039948</pqid></control><display><type>article</type><title>Pair potentials from diffraction data on liquids: A neural network solution</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><creator>Tóth, Gergely ; Király, Norbert ; Vrabecz, Attila</creator><creatorcontrib>Tóth, Gergely ; Király, Norbert ; Vrabecz, Attila</creatorcontrib><description>The inverse theorem of liquids states a one to one correspondence between classical mechanical pair potentials and structural functions. Molecular-dynamics and Monte Carlo simulations provide exact structural functions for known pair interactions. There is no exact or widespread method in the opposite direction, where the pair interactions are to be determined from a priori known pair-correlation functions or structure factors. The methods based on the integral equation theories of liquids are approximate and the iterative refinements of pair potentials with simulations take a long time. We applied artificial neural networks to get pair interactions from known structure factors in this study. We performed molecular-dynamics simulations on one-component systems with different pair potentials and the structure factors were calculated. To optimize (train) the weights of neural networks 2000 pair interaction-structure factor pairs were used. The performance of the method was tested on further 200 data pairs. The method provided reasonable potentials for the majority of the systems opening a "quick and dirty" method to determine pair interactions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2102887</identifier><identifier>PMID: 16375519</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2005-11, Vol.123 (17), p.174109-174109-8</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-6416ca3d894de3a99ff0d75e960a0e23e78cad072225a9e1518edd6a2909ad0f3</citedby><cites>FETCH-LOGICAL-c404t-6416ca3d894de3a99ff0d75e960a0e23e78cad072225a9e1518edd6a2909ad0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16375519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tóth, Gergely</creatorcontrib><creatorcontrib>Király, Norbert</creatorcontrib><creatorcontrib>Vrabecz, Attila</creatorcontrib><title>Pair potentials from diffraction data on liquids: A neural network solution</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The inverse theorem of liquids states a one to one correspondence between classical mechanical pair potentials and structural functions. Molecular-dynamics and Monte Carlo simulations provide exact structural functions for known pair interactions. There is no exact or widespread method in the opposite direction, where the pair interactions are to be determined from a priori known pair-correlation functions or structure factors. The methods based on the integral equation theories of liquids are approximate and the iterative refinements of pair potentials with simulations take a long time. We applied artificial neural networks to get pair interactions from known structure factors in this study. We performed molecular-dynamics simulations on one-component systems with different pair potentials and the structure factors were calculated. To optimize (train) the weights of neural networks 2000 pair interaction-structure factor pairs were used. The performance of the method was tested on further 200 data pairs. The method provided reasonable potentials for the majority of the systems opening a "quick and dirty" method to determine pair interactions.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMozji68A9IVoKLjjdJmzYuhGHwhQO60HWITQLRPmaSFPHfmzIFV64OXD4O93wInRNYEuDsmiwpAVpV5QGaE6hEVnIBh2gOQEkmOPAZOgnhEwBISfNjNCOclUVBxBw9vyrn8baPpotONQFb37dYO2u9qqPrO6xVVDhl43aD0-EGr3BnBq-aFPG791849M0woqfoyKYKczblAr3f372tH7PNy8PTerXJ6hzymPGc8FoxXYlcG6aEsBZ0WZj0qAJDmSmrWmkoKaWFEoYUpDJac0UFiHS3bIEu971b3-8GE6JsXahN06jO9EOQaTwTIq8SeLUHa9-H4I2VW-9a5X8kATmak0RO5hJ7MZUOH63Rf-SkKgG3eyDULqpx7_9to1T5J1WOUtkvUId-Ew</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Tóth, Gergely</creator><creator>Király, Norbert</creator><creator>Vrabecz, Attila</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051101</creationdate><title>Pair potentials from diffraction data on liquids: A neural network solution</title><author>Tóth, Gergely ; Király, Norbert ; Vrabecz, Attila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-6416ca3d894de3a99ff0d75e960a0e23e78cad072225a9e1518edd6a2909ad0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tóth, Gergely</creatorcontrib><creatorcontrib>Király, Norbert</creatorcontrib><creatorcontrib>Vrabecz, Attila</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tóth, Gergely</au><au>Király, Norbert</au><au>Vrabecz, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pair potentials from diffraction data on liquids: A neural network solution</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>123</volume><issue>17</issue><spage>174109</spage><epage>174109-8</epage><pages>174109-174109-8</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The inverse theorem of liquids states a one to one correspondence between classical mechanical pair potentials and structural functions. Molecular-dynamics and Monte Carlo simulations provide exact structural functions for known pair interactions. There is no exact or widespread method in the opposite direction, where the pair interactions are to be determined from a priori known pair-correlation functions or structure factors. The methods based on the integral equation theories of liquids are approximate and the iterative refinements of pair potentials with simulations take a long time. We applied artificial neural networks to get pair interactions from known structure factors in this study. We performed molecular-dynamics simulations on one-component systems with different pair potentials and the structure factors were calculated. To optimize (train) the weights of neural networks 2000 pair interaction-structure factor pairs were used. The performance of the method was tested on further 200 data pairs. The method provided reasonable potentials for the majority of the systems opening a "quick and dirty" method to determine pair interactions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>16375519</pmid><doi>10.1063/1.2102887</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-11, Vol.123 (17), p.174109-174109-8
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_69039948
source American Institute of Physics (AIP) Journals; AIP Digital Archive
title Pair potentials from diffraction data on liquids: A neural network solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pair%20potentials%20from%20diffraction%20data%20on%20liquids:%20A%20neural%20network%20solution&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=T%C3%B3th,%20Gergely&rft.date=2005-11-01&rft.volume=123&rft.issue=17&rft.spage=174109&rft.epage=174109-8&rft.pages=174109-174109-8&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2102887&rft_dat=%3Cproquest_cross%3E69039948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69039948&rft_id=info:pmid/16375519&rfr_iscdi=true