Genetic defects in ciliary structure and function

Cilia, hair-like structures extending from the cell membrane, perform diverse biological functions. Primary (genetic) defects in the structure and function of sensory and motile cilia result in multiple ciliopathies. The most prominent genetic abnormality involving motile cilia (and the respiratory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of physiology 2007-01, Vol.69 (1), p.423-450
Hauptverfasser: Zariwala, Maimoona A, Knowles, Michael R, Omran, Heymut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cilia, hair-like structures extending from the cell membrane, perform diverse biological functions. Primary (genetic) defects in the structure and function of sensory and motile cilia result in multiple ciliopathies. The most prominent genetic abnormality involving motile cilia (and the respiratory tract) is primary ciliary dyskinesia (PCD). PCD is a rare, usually autosomal recessive, genetically heterogeneous disorder characterized by sino-pulmonary disease, laterality defects, and male infertility. Ciliary ultrastructural defects are identified in approximately 90% of PCD patients and involve the outer dynein arms, inner dynein arms, or both. Diagnosing PCD is challenging and requires a compatible clinical phenotype together with tests such as ciliary ultrastructural analysis, immunofluorescent staining, ciliary beat assessment, and/or nasal nitric oxide measurements. Recent mutational analysis demonstrated that 38% of PCD patients carry mutations of the dynein genes DNAI1 and DNAH5. Increased understanding of the pathogenesis will aid in better diagnosis and treatment of PCD.
ISSN:0066-4278
1545-1585
DOI:10.1146/annurev.physiol.69.040705.141301