Wnt signaling interacts with Shh to regulate taste papilla development

Wnt and Shh signaling pathways are critical for the development and maturation of many epithelial tissues. Both pathways have roles in stem cell maintenance, tissue development, and tumorigenesis. However, linkage between these pathways in mammalian systems had not been well established. Here, we re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (7), p.2253-2258
Hauptverfasser: Iwatsuki, Ken, Liu, Hong-Xiang, Grónder, Albert, Singer, Meredith A, Lane, Timothy F, Grosschedl, Rudolf, Mistretta, Charlotte M, Margolskee, Robert F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2258
container_issue 7
container_start_page 2253
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Iwatsuki, Ken
Liu, Hong-Xiang
Grónder, Albert
Singer, Meredith A
Lane, Timothy F
Grosschedl, Rudolf
Mistretta, Charlotte M
Margolskee, Robert F
description Wnt and Shh signaling pathways are critical for the development and maturation of many epithelial tissues. Both pathways have roles in stem cell maintenance, tissue development, and tumorigenesis. However, linkage between these pathways in mammalian systems had not been well established. Here, we report that Shh expression in fungiform papillae and formation of normal mature fungiform papillae depend on signaling through Wnt and β-catenin. We observed that during fungiform papilla formation in mice, Shh and components of the Wnt/β-catenin signaling pathway are expressed together in the developing placode. The elimination of Wnt/β-catenin signaling in either Lef1 or Wnt10b knockout mice resulted in down-regulation of Shh expression. In addition, the size and number of fungiform papillae were greatly reduced in Lef1 knockout mice. By examining embryonic mouse tongues in culture we determined that activation of Wnt/β-catenin signaling up-regulates Shh expression. We observed that blocking Shh signaling in cultured tongue explants enhanced papillae formation and was accompanied by an up-regulation of Wnt/β-catenin signaling, indicating that Shh inhibits the Wnt/β-catenin pathway. Exogenously added Shh suppressed expression of endogenous Shh and inhibited Wnt/β-catenin signaling (assessed in TOPGAL mice), further implicating Shh as an inhibitor of the Wnt/β-catenin pathway. Our observations indicate that Wnt/β-catenin signaling and interactions between the Wnt and Shh pathways play essential roles in the development of fungiform papillae.
doi_str_mv 10.1073/pnas.0607399104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69008026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426457</jstor_id><sourcerecordid>25426457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-43f12656520c09fc5f7e63ea4590ab9078a8c2072f04901da1d72caee783e1083</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0EIkegpgJWKaDaZOz1Z4OEIgJIkShCRGk5Pu-eT771YnsD-e_x6U65QAGNbWl-88ZvHkIvMZxiEN3ZNJp8Crw-lcJAH6EFBoVbThU8RgsAIlpJCT1Cz3JeA4BiEp6iIyyIpBzDAl18H0uT_TCa4Meh8WNxydiSm5--rJqr1aopsUlumIMprikm13Mykw_BNEt360KcNm4sz9GT3oTsXuzvY3R98fHb-ef28uunL-cfLlvLGJSWdj0mnHFGwILqLeuF450zlCkwNwqENNISEKSH6gAvDV4KYo1zQnYOg-yO0fud7jTfbNzS1tHJBD0lvzHpTkfj9Z-V0a_0EG81FooSLKrA271Aij9ml4ve-GxdtTO6OGfNFYAEwv8L4rrKTjJcwZO_wHWcU91n1gQw7STFpEJnO8immHNy_f2XMehtknqbpD4kWTteP3R64PfRPQC2nQc5qoUmhHUVePdPQPdzCMX9KpV8tSPXucR0jxJGCadsu7Q3u3pvojZD8llfX1VzHYCgQtRZvwHaDsQD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201438412</pqid></control><display><type>article</type><title>Wnt signaling interacts with Shh to regulate taste papilla development</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Iwatsuki, Ken ; Liu, Hong-Xiang ; Grónder, Albert ; Singer, Meredith A ; Lane, Timothy F ; Grosschedl, Rudolf ; Mistretta, Charlotte M ; Margolskee, Robert F</creator><creatorcontrib>Iwatsuki, Ken ; Liu, Hong-Xiang ; Grónder, Albert ; Singer, Meredith A ; Lane, Timothy F ; Grosschedl, Rudolf ; Mistretta, Charlotte M ; Margolskee, Robert F</creatorcontrib><description>Wnt and Shh signaling pathways are critical for the development and maturation of many epithelial tissues. Both pathways have roles in stem cell maintenance, tissue development, and tumorigenesis. However, linkage between these pathways in mammalian systems had not been well established. Here, we report that Shh expression in fungiform papillae and formation of normal mature fungiform papillae depend on signaling through Wnt and β-catenin. We observed that during fungiform papilla formation in mice, Shh and components of the Wnt/β-catenin signaling pathway are expressed together in the developing placode. The elimination of Wnt/β-catenin signaling in either Lef1 or Wnt10b knockout mice resulted in down-regulation of Shh expression. In addition, the size and number of fungiform papillae were greatly reduced in Lef1 knockout mice. By examining embryonic mouse tongues in culture we determined that activation of Wnt/β-catenin signaling up-regulates Shh expression. We observed that blocking Shh signaling in cultured tongue explants enhanced papillae formation and was accompanied by an up-regulation of Wnt/β-catenin signaling, indicating that Shh inhibits the Wnt/β-catenin pathway. Exogenously added Shh suppressed expression of endogenous Shh and inhibited Wnt/β-catenin signaling (assessed in TOPGAL mice), further implicating Shh as an inhibitor of the Wnt/β-catenin pathway. Our observations indicate that Wnt/β-catenin signaling and interactions between the Wnt and Shh pathways play essential roles in the development of fungiform papillae.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0607399104</identifier><identifier>PMID: 17284610</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; beta Catenin - metabolism ; Biological Sciences ; Catenins ; Cells ; Complementary DNA ; Gene Expression Regulation ; Gustatory perception ; Hedgehog Proteins - physiology ; In situ hybridization ; Lymphoid Enhancer-Binding Factor 1 - deficiency ; Lymphoid Enhancer-Binding Factor 1 - physiology ; Mandible ; Mice ; Mice, Knockout ; Papillae ; Proteins ; Rodents ; Signal Transduction ; Taste Buds - growth &amp; development ; Tongue ; Transcription factors ; Wnt Proteins - antagonists &amp; inhibitors ; Wnt Proteins - deficiency ; Wnt Proteins - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (7), p.2253-2258</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 13, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-43f12656520c09fc5f7e63ea4590ab9078a8c2072f04901da1d72caee783e1083</citedby><cites>FETCH-LOGICAL-c550t-43f12656520c09fc5f7e63ea4590ab9078a8c2072f04901da1d72caee783e1083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426457$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426457$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17284610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwatsuki, Ken</creatorcontrib><creatorcontrib>Liu, Hong-Xiang</creatorcontrib><creatorcontrib>Grónder, Albert</creatorcontrib><creatorcontrib>Singer, Meredith A</creatorcontrib><creatorcontrib>Lane, Timothy F</creatorcontrib><creatorcontrib>Grosschedl, Rudolf</creatorcontrib><creatorcontrib>Mistretta, Charlotte M</creatorcontrib><creatorcontrib>Margolskee, Robert F</creatorcontrib><title>Wnt signaling interacts with Shh to regulate taste papilla development</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Wnt and Shh signaling pathways are critical for the development and maturation of many epithelial tissues. Both pathways have roles in stem cell maintenance, tissue development, and tumorigenesis. However, linkage between these pathways in mammalian systems had not been well established. Here, we report that Shh expression in fungiform papillae and formation of normal mature fungiform papillae depend on signaling through Wnt and β-catenin. We observed that during fungiform papilla formation in mice, Shh and components of the Wnt/β-catenin signaling pathway are expressed together in the developing placode. The elimination of Wnt/β-catenin signaling in either Lef1 or Wnt10b knockout mice resulted in down-regulation of Shh expression. In addition, the size and number of fungiform papillae were greatly reduced in Lef1 knockout mice. By examining embryonic mouse tongues in culture we determined that activation of Wnt/β-catenin signaling up-regulates Shh expression. We observed that blocking Shh signaling in cultured tongue explants enhanced papillae formation and was accompanied by an up-regulation of Wnt/β-catenin signaling, indicating that Shh inhibits the Wnt/β-catenin pathway. Exogenously added Shh suppressed expression of endogenous Shh and inhibited Wnt/β-catenin signaling (assessed in TOPGAL mice), further implicating Shh as an inhibitor of the Wnt/β-catenin pathway. Our observations indicate that Wnt/β-catenin signaling and interactions between the Wnt and Shh pathways play essential roles in the development of fungiform papillae.</description><subject>Animals</subject><subject>Antibodies</subject><subject>beta Catenin - metabolism</subject><subject>Biological Sciences</subject><subject>Catenins</subject><subject>Cells</subject><subject>Complementary DNA</subject><subject>Gene Expression Regulation</subject><subject>Gustatory perception</subject><subject>Hedgehog Proteins - physiology</subject><subject>In situ hybridization</subject><subject>Lymphoid Enhancer-Binding Factor 1 - deficiency</subject><subject>Lymphoid Enhancer-Binding Factor 1 - physiology</subject><subject>Mandible</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Papillae</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Taste Buds - growth &amp; development</subject><subject>Tongue</subject><subject>Transcription factors</subject><subject>Wnt Proteins - antagonists &amp; inhibitors</subject><subject>Wnt Proteins - deficiency</subject><subject>Wnt Proteins - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS0EIkegpgJWKaDaZOz1Z4OEIgJIkShCRGk5Pu-eT771YnsD-e_x6U65QAGNbWl-88ZvHkIvMZxiEN3ZNJp8Crw-lcJAH6EFBoVbThU8RgsAIlpJCT1Cz3JeA4BiEp6iIyyIpBzDAl18H0uT_TCa4Meh8WNxydiSm5--rJqr1aopsUlumIMprikm13Mykw_BNEt360KcNm4sz9GT3oTsXuzvY3R98fHb-ef28uunL-cfLlvLGJSWdj0mnHFGwILqLeuF450zlCkwNwqENNISEKSH6gAvDV4KYo1zQnYOg-yO0fud7jTfbNzS1tHJBD0lvzHpTkfj9Z-V0a_0EG81FooSLKrA271Aij9ml4ve-GxdtTO6OGfNFYAEwv8L4rrKTjJcwZO_wHWcU91n1gQw7STFpEJnO8immHNy_f2XMehtknqbpD4kWTteP3R64PfRPQC2nQc5qoUmhHUVePdPQPdzCMX9KpV8tSPXucR0jxJGCadsu7Q3u3pvojZD8llfX1VzHYCgQtRZvwHaDsQD</recordid><startdate>20070213</startdate><enddate>20070213</enddate><creator>Iwatsuki, Ken</creator><creator>Liu, Hong-Xiang</creator><creator>Grónder, Albert</creator><creator>Singer, Meredith A</creator><creator>Lane, Timothy F</creator><creator>Grosschedl, Rudolf</creator><creator>Mistretta, Charlotte M</creator><creator>Margolskee, Robert F</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070213</creationdate><title>Wnt signaling interacts with Shh to regulate taste papilla development</title><author>Iwatsuki, Ken ; Liu, Hong-Xiang ; Grónder, Albert ; Singer, Meredith A ; Lane, Timothy F ; Grosschedl, Rudolf ; Mistretta, Charlotte M ; Margolskee, Robert F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-43f12656520c09fc5f7e63ea4590ab9078a8c2072f04901da1d72caee783e1083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>beta Catenin - metabolism</topic><topic>Biological Sciences</topic><topic>Catenins</topic><topic>Cells</topic><topic>Complementary DNA</topic><topic>Gene Expression Regulation</topic><topic>Gustatory perception</topic><topic>Hedgehog Proteins - physiology</topic><topic>In situ hybridization</topic><topic>Lymphoid Enhancer-Binding Factor 1 - deficiency</topic><topic>Lymphoid Enhancer-Binding Factor 1 - physiology</topic><topic>Mandible</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Papillae</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Taste Buds - growth &amp; development</topic><topic>Tongue</topic><topic>Transcription factors</topic><topic>Wnt Proteins - antagonists &amp; inhibitors</topic><topic>Wnt Proteins - deficiency</topic><topic>Wnt Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwatsuki, Ken</creatorcontrib><creatorcontrib>Liu, Hong-Xiang</creatorcontrib><creatorcontrib>Grónder, Albert</creatorcontrib><creatorcontrib>Singer, Meredith A</creatorcontrib><creatorcontrib>Lane, Timothy F</creatorcontrib><creatorcontrib>Grosschedl, Rudolf</creatorcontrib><creatorcontrib>Mistretta, Charlotte M</creatorcontrib><creatorcontrib>Margolskee, Robert F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwatsuki, Ken</au><au>Liu, Hong-Xiang</au><au>Grónder, Albert</au><au>Singer, Meredith A</au><au>Lane, Timothy F</au><au>Grosschedl, Rudolf</au><au>Mistretta, Charlotte M</au><au>Margolskee, Robert F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wnt signaling interacts with Shh to regulate taste papilla development</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-13</date><risdate>2007</risdate><volume>104</volume><issue>7</issue><spage>2253</spage><epage>2258</epage><pages>2253-2258</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Wnt and Shh signaling pathways are critical for the development and maturation of many epithelial tissues. Both pathways have roles in stem cell maintenance, tissue development, and tumorigenesis. However, linkage between these pathways in mammalian systems had not been well established. Here, we report that Shh expression in fungiform papillae and formation of normal mature fungiform papillae depend on signaling through Wnt and β-catenin. We observed that during fungiform papilla formation in mice, Shh and components of the Wnt/β-catenin signaling pathway are expressed together in the developing placode. The elimination of Wnt/β-catenin signaling in either Lef1 or Wnt10b knockout mice resulted in down-regulation of Shh expression. In addition, the size and number of fungiform papillae were greatly reduced in Lef1 knockout mice. By examining embryonic mouse tongues in culture we determined that activation of Wnt/β-catenin signaling up-regulates Shh expression. We observed that blocking Shh signaling in cultured tongue explants enhanced papillae formation and was accompanied by an up-regulation of Wnt/β-catenin signaling, indicating that Shh inhibits the Wnt/β-catenin pathway. Exogenously added Shh suppressed expression of endogenous Shh and inhibited Wnt/β-catenin signaling (assessed in TOPGAL mice), further implicating Shh as an inhibitor of the Wnt/β-catenin pathway. Our observations indicate that Wnt/β-catenin signaling and interactions between the Wnt and Shh pathways play essential roles in the development of fungiform papillae.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17284610</pmid><doi>10.1073/pnas.0607399104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (7), p.2253-2258
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_69008026
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Antibodies
beta Catenin - metabolism
Biological Sciences
Catenins
Cells
Complementary DNA
Gene Expression Regulation
Gustatory perception
Hedgehog Proteins - physiology
In situ hybridization
Lymphoid Enhancer-Binding Factor 1 - deficiency
Lymphoid Enhancer-Binding Factor 1 - physiology
Mandible
Mice
Mice, Knockout
Papillae
Proteins
Rodents
Signal Transduction
Taste Buds - growth & development
Tongue
Transcription factors
Wnt Proteins - antagonists & inhibitors
Wnt Proteins - deficiency
Wnt Proteins - physiology
title Wnt signaling interacts with Shh to regulate taste papilla development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wnt%20signaling%20interacts%20with%20Shh%20to%20regulate%20taste%20papilla%20development&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Iwatsuki,%20Ken&rft.date=2007-02-13&rft.volume=104&rft.issue=7&rft.spage=2253&rft.epage=2258&rft.pages=2253-2258&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0607399104&rft_dat=%3Cjstor_proqu%3E25426457%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201438412&rft_id=info:pmid/17284610&rft_jstor_id=25426457&rfr_iscdi=true