EVOLUTIONARY REPLACEMENT OF COMPONENTS IN A SALAMANDER PHEROMONE SIGNALING COMPLEX: MORE EVIDENCE FOR PHENOTYPIC-MOLECULAR DECOUPLING

In this article we explore the evolutionary history of a functional complex at the molecular level in plethodontid salamanders. The complex consists of a proteinaceous courtship pheromone, a pheromone-producing gland on the male's chin, and a set of behaviors for delivering the pheromone to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2007-01, Vol.61 (1), p.202-215
Hauptverfasser: Palmer, Catherine A, Watts, Richard A, Houck, Lynne D, Picard, Amy L, Arnold, Stevan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 1
container_start_page 202
container_title Evolution
container_volume 61
creator Palmer, Catherine A
Watts, Richard A
Houck, Lynne D
Picard, Amy L
Arnold, Stevan J
description In this article we explore the evolutionary history of a functional complex at the molecular level in plethodontid salamanders. The complex consists of a proteinaceous courtship pheromone, a pheromone-producing gland on the male's chin, and a set of behaviors for delivering the pheromone to the female. Long-term evolutionary stasis is the defining feature of this complex at both the morphological and behavioral levels. However, our previous assessment of the pheromone gene, plethodontid receptivity factor (PRF), revealed rapid evolution at the molecular level despite stasis at higher levels of organization. Analysis of a second pheromone gene, sodefrin precursor-like factor (SPF), now indicates that evolutionary decoupling in this complex is pervasive. The evolutionary profiles of SPF and PRF are remarkably similar in that: (a) both genes exhibit high levels of sequence diversity both within and across taxa, (b) genetic diversity has been driven by strong positive selection, and (c) the genes have evolved heterogeneously in different salamander lineages. The composition of the pheromone signal as a whole, however, has experienced an extraordinary evolutionary transition. Whereas SPF has been retained throughout the 100 MY radiation of salamanders, PRF has only recently been recruited to a pheromone function (27 million years ago). When SPF and PRF coexist in the same clade, they show contrasting patterns of evolution. When one shows rapid evolution driven by positive selection, the other shows neutral divergence restrained by purifying selection. In one clade, the origin and subsequent rapid evolution of PRF appear to have interfered with the evolution and persistence of SPF, leading to a pattern of evolutionary replacement. Overall, these two pheromone genes provide a revealing window on the dynamics that drive the evolution of multiple traits in a signaling complex.
doi_str_mv 10.1111/j.1558-5646.2007.00017.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69007469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1235577761</sourcerecordid><originalsourceid>FETCH-LOGICAL-b5447-d100ecc2f7804fedf049c909a69107a5a1e4682e18d066161b246f78086a3f253</originalsourceid><addsrcrecordid>eNqNkd1umzAYhq1qU5t1u4XK2sHOYDYYA9NOLOJQJrARSfpzZBFiJLIkdNBo6QXsvmdC1Ek7qk_88z3vJ9sPABAjG5vxdWNjzwssjxJqOwj5NkII-_bxAkxeC-_AxBwSyw0cdAU-9P3GQKGHw0twhX0XIeKGE_CH38l0uUikYMUjLHiesohnXCygnMFIZrkUZjOHiYAMzlnKMiamvID5LS9kZopwnsSCpYmIT3jKH77BTBYc8rtkykXE4UyecCEXj3kSWZlMebRMWQGnPJLLfIh-BO_rctvrT-f5GixnfBHdWqmMk4il1sojxLfWGCFdVU7tB4jUel0jElYhCksaYuSXXok1oYGjcbBGlGKKVw6hAxzQ0q0dz70GX8a-T13766D7Z7Vr-kpvt-Vet4de0dB8JqGhAT__B27aQ7c3d1OO4yNCPNc1UDBCVdf2fadr9dQ1u7J7URipwZPaqEGHGnSowZM6eVJHE7059z-sdnr9L3gWY4DvI_C72eqXNzdWRqdZmLg1xpv-WR9f42X3U1Hf9T11L2IlHsQ8_kEiRQ1PR37VtO1ev_0hfwFESLQO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227044533</pqid></control><display><type>article</type><title>EVOLUTIONARY REPLACEMENT OF COMPONENTS IN A SALAMANDER PHEROMONE SIGNALING COMPLEX: MORE EVIDENCE FOR PHENOTYPIC-MOLECULAR DECOUPLING</title><source>MEDLINE</source><source>BioOne Complete</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Palmer, Catherine A ; Watts, Richard A ; Houck, Lynne D ; Picard, Amy L ; Arnold, Stevan J</creator><contributor>Harrison, R</contributor><creatorcontrib>Palmer, Catherine A ; Watts, Richard A ; Houck, Lynne D ; Picard, Amy L ; Arnold, Stevan J ; Harrison, R</creatorcontrib><description>In this article we explore the evolutionary history of a functional complex at the molecular level in plethodontid salamanders. The complex consists of a proteinaceous courtship pheromone, a pheromone-producing gland on the male's chin, and a set of behaviors for delivering the pheromone to the female. Long-term evolutionary stasis is the defining feature of this complex at both the morphological and behavioral levels. However, our previous assessment of the pheromone gene, plethodontid receptivity factor (PRF), revealed rapid evolution at the molecular level despite stasis at higher levels of organization. Analysis of a second pheromone gene, sodefrin precursor-like factor (SPF), now indicates that evolutionary decoupling in this complex is pervasive. The evolutionary profiles of SPF and PRF are remarkably similar in that: (a) both genes exhibit high levels of sequence diversity both within and across taxa, (b) genetic diversity has been driven by strong positive selection, and (c) the genes have evolved heterogeneously in different salamander lineages. The composition of the pheromone signal as a whole, however, has experienced an extraordinary evolutionary transition. Whereas SPF has been retained throughout the 100 MY radiation of salamanders, PRF has only recently been recruited to a pheromone function (27 million years ago). When SPF and PRF coexist in the same clade, they show contrasting patterns of evolution. When one shows rapid evolution driven by positive selection, the other shows neutral divergence restrained by purifying selection. In one clade, the origin and subsequent rapid evolution of PRF appear to have interfered with the evolution and persistence of SPF, leading to a pattern of evolutionary replacement. Overall, these two pheromone genes provide a revealing window on the dynamics that drive the evolution of multiple traits in a signaling complex.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2007.00017.x</identifier><identifier>PMID: 17300439</identifier><language>eng</language><publisher>Malden, USA: Blackwell Science Inc</publisher><subject>Amino Acid Sequence ; Animal behavior ; Animal Communication ; Animals ; Base Sequence ; Bayes Theorem ; Chemicals ; Courtship signal ; DNA Primers ; Evolution, Molecular ; Evolutionary biology ; Genetic diversity ; Genetic Variation ; Genotype &amp; phenotype ; Models, Genetic ; Molecular Sequence Data ; Molecules ; Original s ; pheromone ; Pheromones - genetics ; phospholipase A2 inhibitor ; Phylogeny ; positive selection ; rapid evolution ; reproductive proteins ; Reptiles &amp; amphibians ; Selection, Genetic ; Sequence Analysis, DNA ; Sex Attractants - genetics ; sex-related genes ; Sexual Behavior, Animal - physiology ; United States ; Urodela - genetics ; Urodela - physiology ; Zoology</subject><ispartof>Evolution, 2007-01, Vol.61 (1), p.202-215</ispartof><rights>2007 The Author(s) Journal compilation © 2007 The Society for the Study of Evolution</rights><rights>Copyright Society for the Study of Evolution Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b5447-d100ecc2f7804fedf049c909a69107a5a1e4682e18d066161b246f78086a3f253</citedby><cites>FETCH-LOGICAL-b5447-d100ecc2f7804fedf049c909a69107a5a1e4682e18d066161b246f78086a3f253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1111/j.1558-5646.2007.00017.x$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1558-5646.2007.00017.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,26978,27924,27925,45574,45575,52363</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17300439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Harrison, R</contributor><creatorcontrib>Palmer, Catherine A</creatorcontrib><creatorcontrib>Watts, Richard A</creatorcontrib><creatorcontrib>Houck, Lynne D</creatorcontrib><creatorcontrib>Picard, Amy L</creatorcontrib><creatorcontrib>Arnold, Stevan J</creatorcontrib><title>EVOLUTIONARY REPLACEMENT OF COMPONENTS IN A SALAMANDER PHEROMONE SIGNALING COMPLEX: MORE EVIDENCE FOR PHENOTYPIC-MOLECULAR DECOUPLING</title><title>Evolution</title><addtitle>Evolution</addtitle><description>In this article we explore the evolutionary history of a functional complex at the molecular level in plethodontid salamanders. The complex consists of a proteinaceous courtship pheromone, a pheromone-producing gland on the male's chin, and a set of behaviors for delivering the pheromone to the female. Long-term evolutionary stasis is the defining feature of this complex at both the morphological and behavioral levels. However, our previous assessment of the pheromone gene, plethodontid receptivity factor (PRF), revealed rapid evolution at the molecular level despite stasis at higher levels of organization. Analysis of a second pheromone gene, sodefrin precursor-like factor (SPF), now indicates that evolutionary decoupling in this complex is pervasive. The evolutionary profiles of SPF and PRF are remarkably similar in that: (a) both genes exhibit high levels of sequence diversity both within and across taxa, (b) genetic diversity has been driven by strong positive selection, and (c) the genes have evolved heterogeneously in different salamander lineages. The composition of the pheromone signal as a whole, however, has experienced an extraordinary evolutionary transition. Whereas SPF has been retained throughout the 100 MY radiation of salamanders, PRF has only recently been recruited to a pheromone function (27 million years ago). When SPF and PRF coexist in the same clade, they show contrasting patterns of evolution. When one shows rapid evolution driven by positive selection, the other shows neutral divergence restrained by purifying selection. In one clade, the origin and subsequent rapid evolution of PRF appear to have interfered with the evolution and persistence of SPF, leading to a pattern of evolutionary replacement. Overall, these two pheromone genes provide a revealing window on the dynamics that drive the evolution of multiple traits in a signaling complex.</description><subject>Amino Acid Sequence</subject><subject>Animal behavior</subject><subject>Animal Communication</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Bayes Theorem</subject><subject>Chemicals</subject><subject>Courtship signal</subject><subject>DNA Primers</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genotype &amp; phenotype</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Original s</subject><subject>pheromone</subject><subject>Pheromones - genetics</subject><subject>phospholipase A2 inhibitor</subject><subject>Phylogeny</subject><subject>positive selection</subject><subject>rapid evolution</subject><subject>reproductive proteins</subject><subject>Reptiles &amp; amphibians</subject><subject>Selection, Genetic</subject><subject>Sequence Analysis, DNA</subject><subject>Sex Attractants - genetics</subject><subject>sex-related genes</subject><subject>Sexual Behavior, Animal - physiology</subject><subject>United States</subject><subject>Urodela - genetics</subject><subject>Urodela - physiology</subject><subject>Zoology</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd1umzAYhq1qU5t1u4XK2sHOYDYYA9NOLOJQJrARSfpzZBFiJLIkdNBo6QXsvmdC1Ek7qk_88z3vJ9sPABAjG5vxdWNjzwssjxJqOwj5NkII-_bxAkxeC-_AxBwSyw0cdAU-9P3GQKGHw0twhX0XIeKGE_CH38l0uUikYMUjLHiesohnXCygnMFIZrkUZjOHiYAMzlnKMiamvID5LS9kZopwnsSCpYmIT3jKH77BTBYc8rtkykXE4UyecCEXj3kSWZlMebRMWQGnPJLLfIh-BO_rctvrT-f5GixnfBHdWqmMk4il1sojxLfWGCFdVU7tB4jUel0jElYhCksaYuSXXok1oYGjcbBGlGKKVw6hAxzQ0q0dz70GX8a-T13766D7Z7Vr-kpvt-Vet4de0dB8JqGhAT__B27aQ7c3d1OO4yNCPNc1UDBCVdf2fadr9dQ1u7J7URipwZPaqEGHGnSowZM6eVJHE7059z-sdnr9L3gWY4DvI_C72eqXNzdWRqdZmLg1xpv-WR9f42X3U1Hf9T11L2IlHsQ8_kEiRQ1PR37VtO1ev_0hfwFESLQO</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Palmer, Catherine A</creator><creator>Watts, Richard A</creator><creator>Houck, Lynne D</creator><creator>Picard, Amy L</creator><creator>Arnold, Stevan J</creator><general>Blackwell Science Inc</general><general>Blackwell Publishing Inc</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200701</creationdate><title>EVOLUTIONARY REPLACEMENT OF COMPONENTS IN A SALAMANDER PHEROMONE SIGNALING COMPLEX: MORE EVIDENCE FOR PHENOTYPIC-MOLECULAR DECOUPLING</title><author>Palmer, Catherine A ; Watts, Richard A ; Houck, Lynne D ; Picard, Amy L ; Arnold, Stevan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b5447-d100ecc2f7804fedf049c909a69107a5a1e4682e18d066161b246f78086a3f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Animal behavior</topic><topic>Animal Communication</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Bayes Theorem</topic><topic>Chemicals</topic><topic>Courtship signal</topic><topic>DNA Primers</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genotype &amp; phenotype</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Original s</topic><topic>pheromone</topic><topic>Pheromones - genetics</topic><topic>phospholipase A2 inhibitor</topic><topic>Phylogeny</topic><topic>positive selection</topic><topic>rapid evolution</topic><topic>reproductive proteins</topic><topic>Reptiles &amp; amphibians</topic><topic>Selection, Genetic</topic><topic>Sequence Analysis, DNA</topic><topic>Sex Attractants - genetics</topic><topic>sex-related genes</topic><topic>Sexual Behavior, Animal - physiology</topic><topic>United States</topic><topic>Urodela - genetics</topic><topic>Urodela - physiology</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmer, Catherine A</creatorcontrib><creatorcontrib>Watts, Richard A</creatorcontrib><creatorcontrib>Houck, Lynne D</creatorcontrib><creatorcontrib>Picard, Amy L</creatorcontrib><creatorcontrib>Arnold, Stevan J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmer, Catherine A</au><au>Watts, Richard A</au><au>Houck, Lynne D</au><au>Picard, Amy L</au><au>Arnold, Stevan J</au><au>Harrison, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EVOLUTIONARY REPLACEMENT OF COMPONENTS IN A SALAMANDER PHEROMONE SIGNALING COMPLEX: MORE EVIDENCE FOR PHENOTYPIC-MOLECULAR DECOUPLING</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2007-01</date><risdate>2007</risdate><volume>61</volume><issue>1</issue><spage>202</spage><epage>215</epage><pages>202-215</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>In this article we explore the evolutionary history of a functional complex at the molecular level in plethodontid salamanders. The complex consists of a proteinaceous courtship pheromone, a pheromone-producing gland on the male's chin, and a set of behaviors for delivering the pheromone to the female. Long-term evolutionary stasis is the defining feature of this complex at both the morphological and behavioral levels. However, our previous assessment of the pheromone gene, plethodontid receptivity factor (PRF), revealed rapid evolution at the molecular level despite stasis at higher levels of organization. Analysis of a second pheromone gene, sodefrin precursor-like factor (SPF), now indicates that evolutionary decoupling in this complex is pervasive. The evolutionary profiles of SPF and PRF are remarkably similar in that: (a) both genes exhibit high levels of sequence diversity both within and across taxa, (b) genetic diversity has been driven by strong positive selection, and (c) the genes have evolved heterogeneously in different salamander lineages. The composition of the pheromone signal as a whole, however, has experienced an extraordinary evolutionary transition. Whereas SPF has been retained throughout the 100 MY radiation of salamanders, PRF has only recently been recruited to a pheromone function (27 million years ago). When SPF and PRF coexist in the same clade, they show contrasting patterns of evolution. When one shows rapid evolution driven by positive selection, the other shows neutral divergence restrained by purifying selection. In one clade, the origin and subsequent rapid evolution of PRF appear to have interfered with the evolution and persistence of SPF, leading to a pattern of evolutionary replacement. Overall, these two pheromone genes provide a revealing window on the dynamics that drive the evolution of multiple traits in a signaling complex.</abstract><cop>Malden, USA</cop><pub>Blackwell Science Inc</pub><pmid>17300439</pmid><doi>10.1111/j.1558-5646.2007.00017.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2007-01, Vol.61 (1), p.202-215
issn 0014-3820
1558-5646
language eng
recordid cdi_proquest_miscellaneous_69007469
source MEDLINE; BioOne Complete; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Amino Acid Sequence
Animal behavior
Animal Communication
Animals
Base Sequence
Bayes Theorem
Chemicals
Courtship signal
DNA Primers
Evolution, Molecular
Evolutionary biology
Genetic diversity
Genetic Variation
Genotype & phenotype
Models, Genetic
Molecular Sequence Data
Molecules
Original s
pheromone
Pheromones - genetics
phospholipase A2 inhibitor
Phylogeny
positive selection
rapid evolution
reproductive proteins
Reptiles & amphibians
Selection, Genetic
Sequence Analysis, DNA
Sex Attractants - genetics
sex-related genes
Sexual Behavior, Animal - physiology
United States
Urodela - genetics
Urodela - physiology
Zoology
title EVOLUTIONARY REPLACEMENT OF COMPONENTS IN A SALAMANDER PHEROMONE SIGNALING COMPLEX: MORE EVIDENCE FOR PHENOTYPIC-MOLECULAR DECOUPLING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EVOLUTIONARY%20REPLACEMENT%20OF%20COMPONENTS%20IN%20A%20SALAMANDER%20PHEROMONE%20SIGNALING%20COMPLEX:%20MORE%20EVIDENCE%20FOR%20PHENOTYPIC-MOLECULAR%20DECOUPLING&rft.jtitle=Evolution&rft.au=Palmer,%20Catherine%20A&rft.date=2007-01&rft.volume=61&rft.issue=1&rft.spage=202&rft.epage=215&rft.pages=202-215&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2007.00017.x&rft_dat=%3Cproquest_cross%3E1235577761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227044533&rft_id=info:pmid/17300439&rfr_iscdi=true