Encapsulation of dexamethasone into biodegradable polymeric nanoparticles

The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2007-03, Vol.331 (2), p.153-159
Hauptverfasser: Gómez-Gaete, Carolina, Tsapis, Nicolas, Besnard, Madeleine, Bochot, Amélie, Fattal, Elias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 153
container_title International journal of pharmaceutics
container_volume 331
creator Gómez-Gaete, Carolina
Tsapis, Nicolas
Besnard, Madeleine
Bochot, Amélie
Fattal, Elias
description The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230 nm and −4 mV. The highest drug loading was obtained using 100 mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10 mg of DXM. The drug was completely released from this optimized formulation after 4 h of incubation at 37 °C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1 mg 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.
doi_str_mv 10.1016/j.ijpharm.2006.11.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69005136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517306009859</els_id><sourcerecordid>69005136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a68b7fb9013a212e4a6f837053bbae5517bc20e4598e5cb92b9870273957f3983</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS1URJfCTwDlUm4JnjiOnROqqgKVKnGBszV2JtSrxA52tmr_fbPaSHvkNJfvvXn6GPsEvAIO7dd95ffzI6apqjlvK4CK1_oN24FWohSNai_YjgulSwlKXLL3Oe_5CtYg3rFLUCBV08KO3d8Fh3M-jLj4GIo4FD0940TLI-YYqPBhiYX1sae_CXu0IxVzHF8mSt4VAUOcMS3ejZQ_sLcDjpk-bveK_fl-9_v2Z_nw68f97c1D6UQnlhJbbdVgOw4Ca6ipwXbQQnEprEWS61rrak6N7DRJZ7vadlrxWolOqkF0WlyxL6feOcV_B8qLmXx2NI4YKB6yaTvOJYh2BeUJdCnmnGgwc_ITphcD3Bwdmr3ZHJqjQwNgVodr7vP24GAn6s-pTdoKXG8AZofjkDA4n8-cllrL5lj07cTRquPJUzLZeQqOep_ILaaP_j9TXgGmpZKp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69005136</pqid></control><display><type>article</type><title>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gómez-Gaete, Carolina ; Tsapis, Nicolas ; Besnard, Madeleine ; Bochot, Amélie ; Fattal, Elias</creator><creatorcontrib>Gómez-Gaete, Carolina ; Tsapis, Nicolas ; Besnard, Madeleine ; Bochot, Amélie ; Fattal, Elias</creatorcontrib><description>The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230 nm and −4 mV. The highest drug loading was obtained using 100 mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10 mg of DXM. The drug was completely released from this optimized formulation after 4 h of incubation at 37 °C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1 mg 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2006.11.028</identifier><identifier>PMID: 17157461</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1,2-Dipalmitoylphosphatidylcholine ; Biocompatible Materials - chemistry ; Biocompatible Materials - therapeutic use ; Biological and medical sciences ; Calorimetry, Differential Scanning ; Crystalline drug ; Dexamethasone ; Dexamethasone - administration &amp; dosage ; Drug Carriers - chemistry ; General pharmacology ; Lactic Acid ; Medical sciences ; Nanocapsules - chemistry ; Nanocapsules - therapeutic use ; Nanoparticles ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; PLGA ; Polyglycolic Acid ; Polymers - chemistry ; Polymers - therapeutic use ; Solvents ; X-Ray Diffraction</subject><ispartof>International journal of pharmaceutics, 2007-03, Vol.331 (2), p.153-159</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a68b7fb9013a212e4a6f837053bbae5517bc20e4598e5cb92b9870273957f3983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517306009859$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18588548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17157461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Gaete, Carolina</creatorcontrib><creatorcontrib>Tsapis, Nicolas</creatorcontrib><creatorcontrib>Besnard, Madeleine</creatorcontrib><creatorcontrib>Bochot, Amélie</creatorcontrib><creatorcontrib>Fattal, Elias</creatorcontrib><title>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230 nm and −4 mV. The highest drug loading was obtained using 100 mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10 mg of DXM. The drug was completely released from this optimized formulation after 4 h of incubation at 37 °C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1 mg 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.</description><subject>1,2-Dipalmitoylphosphatidylcholine</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Calorimetry, Differential Scanning</subject><subject>Crystalline drug</subject><subject>Dexamethasone</subject><subject>Dexamethasone - administration &amp; dosage</subject><subject>Drug Carriers - chemistry</subject><subject>General pharmacology</subject><subject>Lactic Acid</subject><subject>Medical sciences</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - therapeutic use</subject><subject>Nanoparticles</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>PLGA</subject><subject>Polyglycolic Acid</subject><subject>Polymers - chemistry</subject><subject>Polymers - therapeutic use</subject><subject>Solvents</subject><subject>X-Ray Diffraction</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQhS1URJfCTwDlUm4JnjiOnROqqgKVKnGBszV2JtSrxA52tmr_fbPaSHvkNJfvvXn6GPsEvAIO7dd95ffzI6apqjlvK4CK1_oN24FWohSNai_YjgulSwlKXLL3Oe_5CtYg3rFLUCBV08KO3d8Fh3M-jLj4GIo4FD0940TLI-YYqPBhiYX1sae_CXu0IxVzHF8mSt4VAUOcMS3ejZQ_sLcDjpk-bveK_fl-9_v2Z_nw68f97c1D6UQnlhJbbdVgOw4Ca6ipwXbQQnEprEWS61rrak6N7DRJZ7vadlrxWolOqkF0WlyxL6feOcV_B8qLmXx2NI4YKB6yaTvOJYh2BeUJdCnmnGgwc_ITphcD3Bwdmr3ZHJqjQwNgVodr7vP24GAn6s-pTdoKXG8AZofjkDA4n8-cllrL5lj07cTRquPJUzLZeQqOep_ILaaP_j9TXgGmpZKp</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Gómez-Gaete, Carolina</creator><creator>Tsapis, Nicolas</creator><creator>Besnard, Madeleine</creator><creator>Bochot, Amélie</creator><creator>Fattal, Elias</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</title><author>Gómez-Gaete, Carolina ; Tsapis, Nicolas ; Besnard, Madeleine ; Bochot, Amélie ; Fattal, Elias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a68b7fb9013a212e4a6f837053bbae5517bc20e4598e5cb92b9870273957f3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Calorimetry, Differential Scanning</topic><topic>Crystalline drug</topic><topic>Dexamethasone</topic><topic>Dexamethasone - administration &amp; dosage</topic><topic>Drug Carriers - chemistry</topic><topic>General pharmacology</topic><topic>Lactic Acid</topic><topic>Medical sciences</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - therapeutic use</topic><topic>Nanoparticles</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>PLGA</topic><topic>Polyglycolic Acid</topic><topic>Polymers - chemistry</topic><topic>Polymers - therapeutic use</topic><topic>Solvents</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Gaete, Carolina</creatorcontrib><creatorcontrib>Tsapis, Nicolas</creatorcontrib><creatorcontrib>Besnard, Madeleine</creatorcontrib><creatorcontrib>Bochot, Amélie</creatorcontrib><creatorcontrib>Fattal, Elias</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Gaete, Carolina</au><au>Tsapis, Nicolas</au><au>Besnard, Madeleine</au><au>Bochot, Amélie</au><au>Fattal, Elias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>331</volume><issue>2</issue><spage>153</spage><epage>159</epage><pages>153-159</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230 nm and −4 mV. The highest drug loading was obtained using 100 mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10 mg of DXM. The drug was completely released from this optimized formulation after 4 h of incubation at 37 °C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1 mg 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17157461</pmid><doi>10.1016/j.ijpharm.2006.11.028</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2007-03, Vol.331 (2), p.153-159
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_69005136
source MEDLINE; Elsevier ScienceDirect Journals
subjects 1,2-Dipalmitoylphosphatidylcholine
Biocompatible Materials - chemistry
Biocompatible Materials - therapeutic use
Biological and medical sciences
Calorimetry, Differential Scanning
Crystalline drug
Dexamethasone
Dexamethasone - administration & dosage
Drug Carriers - chemistry
General pharmacology
Lactic Acid
Medical sciences
Nanocapsules - chemistry
Nanocapsules - therapeutic use
Nanoparticles
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
PLGA
Polyglycolic Acid
Polymers - chemistry
Polymers - therapeutic use
Solvents
X-Ray Diffraction
title Encapsulation of dexamethasone into biodegradable polymeric nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encapsulation%20of%20dexamethasone%20into%20biodegradable%20polymeric%20nanoparticles&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=G%C3%B3mez-Gaete,%20Carolina&rft.date=2007-03-01&rft.volume=331&rft.issue=2&rft.spage=153&rft.epage=159&rft.pages=153-159&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2006.11.028&rft_dat=%3Cproquest_cross%3E69005136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69005136&rft_id=info:pmid/17157461&rft_els_id=S0378517306009859&rfr_iscdi=true