Encapsulation of dexamethasone into biodegradable polymeric nanoparticles
The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanopa...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2007-03, Vol.331 (2), p.153-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 2 |
container_start_page | 153 |
container_title | International journal of pharmaceutics |
container_volume | 331 |
creator | Gómez-Gaete, Carolina Tsapis, Nicolas Besnard, Madeleine Bochot, Amélie Fattal, Elias |
description | The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly(
d,
l-lactide-
co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230
nm and −4
mV. The highest drug loading was obtained using 100
mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10
mg of DXM. The drug was completely released from this optimized formulation after 4
h of incubation at 37
°C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1
mg 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery. |
doi_str_mv | 10.1016/j.ijpharm.2006.11.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69005136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517306009859</els_id><sourcerecordid>69005136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a68b7fb9013a212e4a6f837053bbae5517bc20e4598e5cb92b9870273957f3983</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS1URJfCTwDlUm4JnjiOnROqqgKVKnGBszV2JtSrxA52tmr_fbPaSHvkNJfvvXn6GPsEvAIO7dd95ffzI6apqjlvK4CK1_oN24FWohSNai_YjgulSwlKXLL3Oe_5CtYg3rFLUCBV08KO3d8Fh3M-jLj4GIo4FD0940TLI-YYqPBhiYX1sae_CXu0IxVzHF8mSt4VAUOcMS3ejZQ_sLcDjpk-bveK_fl-9_v2Z_nw68f97c1D6UQnlhJbbdVgOw4Ca6ipwXbQQnEprEWS61rrak6N7DRJZ7vadlrxWolOqkF0WlyxL6feOcV_B8qLmXx2NI4YKB6yaTvOJYh2BeUJdCnmnGgwc_ITphcD3Bwdmr3ZHJqjQwNgVodr7vP24GAn6s-pTdoKXG8AZofjkDA4n8-cllrL5lj07cTRquPJUzLZeQqOep_ILaaP_j9TXgGmpZKp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69005136</pqid></control><display><type>article</type><title>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gómez-Gaete, Carolina ; Tsapis, Nicolas ; Besnard, Madeleine ; Bochot, Amélie ; Fattal, Elias</creator><creatorcontrib>Gómez-Gaete, Carolina ; Tsapis, Nicolas ; Besnard, Madeleine ; Bochot, Amélie ; Fattal, Elias</creatorcontrib><description>The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly(
d,
l-lactide-
co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230
nm and −4
mV. The highest drug loading was obtained using 100
mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10
mg of DXM. The drug was completely released from this optimized formulation after 4
h of incubation at 37
°C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1
mg 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2006.11.028</identifier><identifier>PMID: 17157461</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1,2-Dipalmitoylphosphatidylcholine ; Biocompatible Materials - chemistry ; Biocompatible Materials - therapeutic use ; Biological and medical sciences ; Calorimetry, Differential Scanning ; Crystalline drug ; Dexamethasone ; Dexamethasone - administration & dosage ; Drug Carriers - chemistry ; General pharmacology ; Lactic Acid ; Medical sciences ; Nanocapsules - chemistry ; Nanocapsules - therapeutic use ; Nanoparticles ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; PLGA ; Polyglycolic Acid ; Polymers - chemistry ; Polymers - therapeutic use ; Solvents ; X-Ray Diffraction</subject><ispartof>International journal of pharmaceutics, 2007-03, Vol.331 (2), p.153-159</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a68b7fb9013a212e4a6f837053bbae5517bc20e4598e5cb92b9870273957f3983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517306009859$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18588548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17157461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Gaete, Carolina</creatorcontrib><creatorcontrib>Tsapis, Nicolas</creatorcontrib><creatorcontrib>Besnard, Madeleine</creatorcontrib><creatorcontrib>Bochot, Amélie</creatorcontrib><creatorcontrib>Fattal, Elias</creatorcontrib><title>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly(
d,
l-lactide-
co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230
nm and −4
mV. The highest drug loading was obtained using 100
mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10
mg of DXM. The drug was completely released from this optimized formulation after 4
h of incubation at 37
°C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1
mg 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.</description><subject>1,2-Dipalmitoylphosphatidylcholine</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Calorimetry, Differential Scanning</subject><subject>Crystalline drug</subject><subject>Dexamethasone</subject><subject>Dexamethasone - administration & dosage</subject><subject>Drug Carriers - chemistry</subject><subject>General pharmacology</subject><subject>Lactic Acid</subject><subject>Medical sciences</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - therapeutic use</subject><subject>Nanoparticles</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>PLGA</subject><subject>Polyglycolic Acid</subject><subject>Polymers - chemistry</subject><subject>Polymers - therapeutic use</subject><subject>Solvents</subject><subject>X-Ray Diffraction</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQhS1URJfCTwDlUm4JnjiOnROqqgKVKnGBszV2JtSrxA52tmr_fbPaSHvkNJfvvXn6GPsEvAIO7dd95ffzI6apqjlvK4CK1_oN24FWohSNai_YjgulSwlKXLL3Oe_5CtYg3rFLUCBV08KO3d8Fh3M-jLj4GIo4FD0940TLI-YYqPBhiYX1sae_CXu0IxVzHF8mSt4VAUOcMS3ejZQ_sLcDjpk-bveK_fl-9_v2Z_nw68f97c1D6UQnlhJbbdVgOw4Ca6ipwXbQQnEprEWS61rrak6N7DRJZ7vadlrxWolOqkF0WlyxL6feOcV_B8qLmXx2NI4YKB6yaTvOJYh2BeUJdCnmnGgwc_ITphcD3Bwdmr3ZHJqjQwNgVodr7vP24GAn6s-pTdoKXG8AZofjkDA4n8-cllrL5lj07cTRquPJUzLZeQqOep_ILaaP_j9TXgGmpZKp</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Gómez-Gaete, Carolina</creator><creator>Tsapis, Nicolas</creator><creator>Besnard, Madeleine</creator><creator>Bochot, Amélie</creator><creator>Fattal, Elias</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</title><author>Gómez-Gaete, Carolina ; Tsapis, Nicolas ; Besnard, Madeleine ; Bochot, Amélie ; Fattal, Elias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a68b7fb9013a212e4a6f837053bbae5517bc20e4598e5cb92b9870273957f3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Calorimetry, Differential Scanning</topic><topic>Crystalline drug</topic><topic>Dexamethasone</topic><topic>Dexamethasone - administration & dosage</topic><topic>Drug Carriers - chemistry</topic><topic>General pharmacology</topic><topic>Lactic Acid</topic><topic>Medical sciences</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - therapeutic use</topic><topic>Nanoparticles</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>PLGA</topic><topic>Polyglycolic Acid</topic><topic>Polymers - chemistry</topic><topic>Polymers - therapeutic use</topic><topic>Solvents</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Gaete, Carolina</creatorcontrib><creatorcontrib>Tsapis, Nicolas</creatorcontrib><creatorcontrib>Besnard, Madeleine</creatorcontrib><creatorcontrib>Bochot, Amélie</creatorcontrib><creatorcontrib>Fattal, Elias</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Gaete, Carolina</au><au>Tsapis, Nicolas</au><au>Besnard, Madeleine</au><au>Bochot, Amélie</au><au>Fattal, Elias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encapsulation of dexamethasone into biodegradable polymeric nanoparticles</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>331</volume><issue>2</issue><spage>153</spage><epage>159</epage><pages>153-159</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly(
d,
l-lactide-
co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230
nm and −4
mV. The highest drug loading was obtained using 100
mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10
mg of DXM. The drug was completely released from this optimized formulation after 4
h of incubation at 37
°C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1
mg 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17157461</pmid><doi>10.1016/j.ijpharm.2006.11.028</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2007-03, Vol.331 (2), p.153-159 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_69005136 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 1,2-Dipalmitoylphosphatidylcholine Biocompatible Materials - chemistry Biocompatible Materials - therapeutic use Biological and medical sciences Calorimetry, Differential Scanning Crystalline drug Dexamethasone Dexamethasone - administration & dosage Drug Carriers - chemistry General pharmacology Lactic Acid Medical sciences Nanocapsules - chemistry Nanocapsules - therapeutic use Nanoparticles Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments PLGA Polyglycolic Acid Polymers - chemistry Polymers - therapeutic use Solvents X-Ray Diffraction |
title | Encapsulation of dexamethasone into biodegradable polymeric nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encapsulation%20of%20dexamethasone%20into%20biodegradable%20polymeric%20nanoparticles&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=G%C3%B3mez-Gaete,%20Carolina&rft.date=2007-03-01&rft.volume=331&rft.issue=2&rft.spage=153&rft.epage=159&rft.pages=153-159&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2006.11.028&rft_dat=%3Cproquest_cross%3E69005136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69005136&rft_id=info:pmid/17157461&rft_els_id=S0378517306009859&rfr_iscdi=true |