Compression and shear surface rheology in spread layers of β-casein and β-lactoglobulin

We investigate the surface viscoelasticity of β-lactoglobulin and β-casein spread surface monolayers using a recently discovered method. Step compressions are performed, and the surface pressure is measured as a function of time. This is a common experiment for surface monolayers. However in our exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2007-04, Vol.308 (1), p.93-99
1. Verfasser: Cicuta, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 93
container_title Journal of colloid and interface science
container_volume 308
creator Cicuta, Pietro
description We investigate the surface viscoelasticity of β-lactoglobulin and β-casein spread surface monolayers using a recently discovered method. Step compressions are performed, and the surface pressure is measured as a function of time. This is a common experiment for surface monolayers. However in our experiments the pressure is recorded by two perpendicular sensors, parallel and perpendicular to the compression direction. This enables us to clearly measure the time relaxation of both the compression and shear moduli, at the same time, in a single experiment, and with a standard apparatus. β-Lactoglobulin and β-casein monolayers are interesting because of their importance in food science and because they exhibit universally slow dynamical behavior that is still not fully understood. Our results confirm that the compressional modulus dominates the total viscoelastic response in both proteins. Indeed for β-casein we confirm that the shear modulus is always negligible, i.e., the layer is in a fluid state. In β-lactoglobulin a finite shear modulus emerges above a critical concentration. We emphasize that in Langmuir trough dynamic experiments the surface pressure should be measured in both the compression and the perpendicular directions. Anisotropy in the surface pressure shows that β-casein monolayers are in a fluid state, whereas in β-lactoglobulin a finite shear modulus emerges above a critical concentration.
doi_str_mv 10.1016/j.jcis.2006.12.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69001741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979706011672</els_id><sourcerecordid>69001741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-15e4f6c7bdcbc208dcc00c8660fd4ac4cc0e3e11aa8b6a84e39fe51c2a681bf43</originalsourceid><addsrcrecordid>eNp9kMGK1EAQhhtR3NnVF_AgfdFbYlUn6STgRQZ1hQUvevDUdCrVuz1k0mP3ZGFeywfxmewwg948FQXf_1P1CfEKoURA_W5X7sinUgHoElUJjX4iNgh9U7QI1VOxAVBY9G3fXonrlHYAiE3TPxdX2KqqVqA24sc27A-RU_JhlnYeZXpgG2VaorPEMj5wmML9SfpZpszZUU72xDHJ4OTvXwXZxP4czNtk6RjupzAsk59fiGfOTolfXuaN-P7p47ftbXH39fOX7Ye7gqquPhbYcO00tcNIAynoRiIA6rQGN9aW6rxyxYjWdoO2Xc1V77hBUlZ3OLi6uhFvz72HGH4unI5m7xPxNNmZw5KM7vPfbY0ZVGeQYkgpsjOH6Pc2ngyCWYWanVmFmlWoQWWy0Bx6fWlfhj2P_yIXgxl4cwFsIju5aOe14y_XNQ20_Vr0_sxxdvHoOZpEnmfi0UemoxmD_98dfwBrfZbj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69001741</pqid></control><display><type>article</type><title>Compression and shear surface rheology in spread layers of β-casein and β-lactoglobulin</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cicuta, Pietro</creator><creatorcontrib>Cicuta, Pietro</creatorcontrib><description>We investigate the surface viscoelasticity of β-lactoglobulin and β-casein spread surface monolayers using a recently discovered method. Step compressions are performed, and the surface pressure is measured as a function of time. This is a common experiment for surface monolayers. However in our experiments the pressure is recorded by two perpendicular sensors, parallel and perpendicular to the compression direction. This enables us to clearly measure the time relaxation of both the compression and shear moduli, at the same time, in a single experiment, and with a standard apparatus. β-Lactoglobulin and β-casein monolayers are interesting because of their importance in food science and because they exhibit universally slow dynamical behavior that is still not fully understood. Our results confirm that the compressional modulus dominates the total viscoelastic response in both proteins. Indeed for β-casein we confirm that the shear modulus is always negligible, i.e., the layer is in a fluid state. In β-lactoglobulin a finite shear modulus emerges above a critical concentration. We emphasize that in Langmuir trough dynamic experiments the surface pressure should be measured in both the compression and the perpendicular directions. Anisotropy in the surface pressure shows that β-casein monolayers are in a fluid state, whereas in β-lactoglobulin a finite shear modulus emerges above a critical concentration.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2006.12.056</identifier><identifier>PMID: 17234202</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Chemistry ; Compression ; Exact sciences and technology ; General and physical chemistry ; Interfacial rheology ; Shear ; Stress relaxation ; Surface monolayer ; β-Casein ; β-Lactoglobulin</subject><ispartof>Journal of colloid and interface science, 2007-04, Vol.308 (1), p.93-99</ispartof><rights>2006 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-15e4f6c7bdcbc208dcc00c8660fd4ac4cc0e3e11aa8b6a84e39fe51c2a681bf43</citedby><cites>FETCH-LOGICAL-c384t-15e4f6c7bdcbc208dcc00c8660fd4ac4cc0e3e11aa8b6a84e39fe51c2a681bf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2006.12.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18550796$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17234202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cicuta, Pietro</creatorcontrib><title>Compression and shear surface rheology in spread layers of β-casein and β-lactoglobulin</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>We investigate the surface viscoelasticity of β-lactoglobulin and β-casein spread surface monolayers using a recently discovered method. Step compressions are performed, and the surface pressure is measured as a function of time. This is a common experiment for surface monolayers. However in our experiments the pressure is recorded by two perpendicular sensors, parallel and perpendicular to the compression direction. This enables us to clearly measure the time relaxation of both the compression and shear moduli, at the same time, in a single experiment, and with a standard apparatus. β-Lactoglobulin and β-casein monolayers are interesting because of their importance in food science and because they exhibit universally slow dynamical behavior that is still not fully understood. Our results confirm that the compressional modulus dominates the total viscoelastic response in both proteins. Indeed for β-casein we confirm that the shear modulus is always negligible, i.e., the layer is in a fluid state. In β-lactoglobulin a finite shear modulus emerges above a critical concentration. We emphasize that in Langmuir trough dynamic experiments the surface pressure should be measured in both the compression and the perpendicular directions. Anisotropy in the surface pressure shows that β-casein monolayers are in a fluid state, whereas in β-lactoglobulin a finite shear modulus emerges above a critical concentration.</description><subject>Chemistry</subject><subject>Compression</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfacial rheology</subject><subject>Shear</subject><subject>Stress relaxation</subject><subject>Surface monolayer</subject><subject>β-Casein</subject><subject>β-Lactoglobulin</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMGK1EAQhhtR3NnVF_AgfdFbYlUn6STgRQZ1hQUvevDUdCrVuz1k0mP3ZGFeywfxmewwg948FQXf_1P1CfEKoURA_W5X7sinUgHoElUJjX4iNgh9U7QI1VOxAVBY9G3fXonrlHYAiE3TPxdX2KqqVqA24sc27A-RU_JhlnYeZXpgG2VaorPEMj5wmML9SfpZpszZUU72xDHJ4OTvXwXZxP4czNtk6RjupzAsk59fiGfOTolfXuaN-P7p47ftbXH39fOX7Ye7gqquPhbYcO00tcNIAynoRiIA6rQGN9aW6rxyxYjWdoO2Xc1V77hBUlZ3OLi6uhFvz72HGH4unI5m7xPxNNmZw5KM7vPfbY0ZVGeQYkgpsjOH6Pc2ngyCWYWanVmFmlWoQWWy0Bx6fWlfhj2P_yIXgxl4cwFsIju5aOe14y_XNQ20_Vr0_sxxdvHoOZpEnmfi0UemoxmD_98dfwBrfZbj</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Cicuta, Pietro</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070401</creationdate><title>Compression and shear surface rheology in spread layers of β-casein and β-lactoglobulin</title><author>Cicuta, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-15e4f6c7bdcbc208dcc00c8660fd4ac4cc0e3e11aa8b6a84e39fe51c2a681bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemistry</topic><topic>Compression</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfacial rheology</topic><topic>Shear</topic><topic>Stress relaxation</topic><topic>Surface monolayer</topic><topic>β-Casein</topic><topic>β-Lactoglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cicuta, Pietro</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cicuta, Pietro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compression and shear surface rheology in spread layers of β-casein and β-lactoglobulin</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>308</volume><issue>1</issue><spage>93</spage><epage>99</epage><pages>93-99</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>We investigate the surface viscoelasticity of β-lactoglobulin and β-casein spread surface monolayers using a recently discovered method. Step compressions are performed, and the surface pressure is measured as a function of time. This is a common experiment for surface monolayers. However in our experiments the pressure is recorded by two perpendicular sensors, parallel and perpendicular to the compression direction. This enables us to clearly measure the time relaxation of both the compression and shear moduli, at the same time, in a single experiment, and with a standard apparatus. β-Lactoglobulin and β-casein monolayers are interesting because of their importance in food science and because they exhibit universally slow dynamical behavior that is still not fully understood. Our results confirm that the compressional modulus dominates the total viscoelastic response in both proteins. Indeed for β-casein we confirm that the shear modulus is always negligible, i.e., the layer is in a fluid state. In β-lactoglobulin a finite shear modulus emerges above a critical concentration. We emphasize that in Langmuir trough dynamic experiments the surface pressure should be measured in both the compression and the perpendicular directions. Anisotropy in the surface pressure shows that β-casein monolayers are in a fluid state, whereas in β-lactoglobulin a finite shear modulus emerges above a critical concentration.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>17234202</pmid><doi>10.1016/j.jcis.2006.12.056</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2007-04, Vol.308 (1), p.93-99
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_69001741
source Access via ScienceDirect (Elsevier)
subjects Chemistry
Compression
Exact sciences and technology
General and physical chemistry
Interfacial rheology
Shear
Stress relaxation
Surface monolayer
β-Casein
β-Lactoglobulin
title Compression and shear surface rheology in spread layers of β-casein and β-lactoglobulin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compression%20and%20shear%20surface%20rheology%20in%20spread%20layers%20of%20%CE%B2-casein%20and%20%CE%B2-lactoglobulin&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Cicuta,%20Pietro&rft.date=2007-04-01&rft.volume=308&rft.issue=1&rft.spage=93&rft.epage=99&rft.pages=93-99&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2006.12.056&rft_dat=%3Cproquest_cross%3E69001741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69001741&rft_id=info:pmid/17234202&rft_els_id=S0021979706011672&rfr_iscdi=true