Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces
A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumi...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2007-03, Vol.80A (4), p.955-964 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 4 |
container_start_page | 955 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 80A |
creator | Popat, Ketul C. Chatvanichkul, Kwan-Isara Barnes, George L. Latempa Jr, Thomas Joseph Grimes, Craigs A. Desai, Tejal A. |
description | A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 |
doi_str_mv | 10.1002/jbm.a.31028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68997488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68997488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</originalsourceid><addsrcrecordid>eNp9kEtP3DAURq2KqjzaFXvkFZsq0ziJX0sYUQY0lC4KlbqxbvyoTJN4sBMB_x5PZ4Adq3sX5_t070HokJQzUpbVt7u2n8GsJmUlPqA9QmlVNJLRnfXeyKKuJNtF-yndZZiVtPqEdgkvhWwI30N_rtNow187eI2Nd85GO4weRh8GHBzuIcbwgNMYQw8d1rbrEtZTN07RGpyZAYawCjFMCUM39X4AnKboQNv0GX100CX7ZTsP0M33s1_zRbG8Pr-YnywL3dS1KFqgxtSghZPa0bZtSs0kZ8Ck4cxYaiwAZ9q4ylLuWqrBOQFECt3yVtOqPkDHm95VDPeTTaPqfVpfCoPNdykmpOSNEBn8ugF1DClF69Qq-vzhkyKlWqtUWaUC9V9lpo-2tVPbW_PGbt1lgGyAB9_Zp_e61OXp1Utpscn4rP3xNQPxn2K85lT9_nGulg3_uViwW7WsnwGAt5G0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68997488</pqid></control><display><type>article</type><title>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Popat, Ketul C. ; Chatvanichkul, Kwan-Isara ; Barnes, George L. ; Latempa Jr, Thomas Joseph ; Grimes, Craigs A. ; Desai, Tejal A.</creator><creatorcontrib>Popat, Ketul C. ; Chatvanichkul, Kwan-Isara ; Barnes, George L. ; Latempa Jr, Thomas Joseph ; Grimes, Craigs A. ; Desai, Tejal A.</creatorcontrib><description>A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.31028</identifier><identifier>PMID: 17089417</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alkaline Phosphatase - biosynthesis ; Aluminum Oxide ; Animals ; Biocompatible Materials ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Bone Marrow Cells - ultrastructure ; Cell Adhesion ; Cell Differentiation ; Cell Proliferation ; Cell Survival ; Extracellular Matrix - metabolism ; marrow stromal cells ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; nanoporous alumina ; orthopedic biomaterials ; osseointegration ; Osteoblasts - metabolism ; Osteoblasts - ultrastructure ; Porosity ; Stromal Cells - metabolism ; Stromal Cells - ultrastructure</subject><ispartof>Journal of biomedical materials research. Part A, 2007-03, Vol.80A (4), p.955-964</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</citedby><cites>FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.31028$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.31028$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17089417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Popat, Ketul C.</creatorcontrib><creatorcontrib>Chatvanichkul, Kwan-Isara</creatorcontrib><creatorcontrib>Barnes, George L.</creatorcontrib><creatorcontrib>Latempa Jr, Thomas Joseph</creatorcontrib><creatorcontrib>Grimes, Craigs A.</creatorcontrib><creatorcontrib>Desai, Tejal A.</creatorcontrib><title>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</description><subject>Alkaline Phosphatase - biosynthesis</subject><subject>Aluminum Oxide</subject><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Marrow Cells - ultrastructure</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Extracellular Matrix - metabolism</subject><subject>marrow stromal cells</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>nanoporous alumina</subject><subject>orthopedic biomaterials</subject><subject>osseointegration</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - ultrastructure</subject><subject>Porosity</subject><subject>Stromal Cells - metabolism</subject><subject>Stromal Cells - ultrastructure</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP3DAURq2KqjzaFXvkFZsq0ziJX0sYUQY0lC4KlbqxbvyoTJN4sBMB_x5PZ4Adq3sX5_t070HokJQzUpbVt7u2n8GsJmUlPqA9QmlVNJLRnfXeyKKuJNtF-yndZZiVtPqEdgkvhWwI30N_rtNow187eI2Nd85GO4weRh8GHBzuIcbwgNMYQw8d1rbrEtZTN07RGpyZAYawCjFMCUM39X4AnKboQNv0GX100CX7ZTsP0M33s1_zRbG8Pr-YnywL3dS1KFqgxtSghZPa0bZtSs0kZ8Ck4cxYaiwAZ9q4ylLuWqrBOQFECt3yVtOqPkDHm95VDPeTTaPqfVpfCoPNdykmpOSNEBn8ugF1DClF69Qq-vzhkyKlWqtUWaUC9V9lpo-2tVPbW_PGbt1lgGyAB9_Zp_e61OXp1Utpscn4rP3xNQPxn2K85lT9_nGulg3_uViwW7WsnwGAt5G0</recordid><startdate>20070315</startdate><enddate>20070315</enddate><creator>Popat, Ketul C.</creator><creator>Chatvanichkul, Kwan-Isara</creator><creator>Barnes, George L.</creator><creator>Latempa Jr, Thomas Joseph</creator><creator>Grimes, Craigs A.</creator><creator>Desai, Tejal A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070315</creationdate><title>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</title><author>Popat, Ketul C. ; Chatvanichkul, Kwan-Isara ; Barnes, George L. ; Latempa Jr, Thomas Joseph ; Grimes, Craigs A. ; Desai, Tejal A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alkaline Phosphatase - biosynthesis</topic><topic>Aluminum Oxide</topic><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Marrow Cells - ultrastructure</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Extracellular Matrix - metabolism</topic><topic>marrow stromal cells</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>nanoporous alumina</topic><topic>orthopedic biomaterials</topic><topic>osseointegration</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - ultrastructure</topic><topic>Porosity</topic><topic>Stromal Cells - metabolism</topic><topic>Stromal Cells - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popat, Ketul C.</creatorcontrib><creatorcontrib>Chatvanichkul, Kwan-Isara</creatorcontrib><creatorcontrib>Barnes, George L.</creatorcontrib><creatorcontrib>Latempa Jr, Thomas Joseph</creatorcontrib><creatorcontrib>Grimes, Craigs A.</creatorcontrib><creatorcontrib>Desai, Tejal A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popat, Ketul C.</au><au>Chatvanichkul, Kwan-Isara</au><au>Barnes, George L.</au><au>Latempa Jr, Thomas Joseph</au><au>Grimes, Craigs A.</au><au>Desai, Tejal A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2007-03-15</date><risdate>2007</risdate><volume>80A</volume><issue>4</issue><spage>955</spage><epage>964</epage><pages>955-964</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17089417</pmid><doi>10.1002/jbm.a.31028</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2007-03, Vol.80A (4), p.955-964 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_68997488 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Alkaline Phosphatase - biosynthesis Aluminum Oxide Animals Biocompatible Materials Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Bone Marrow Cells - ultrastructure Cell Adhesion Cell Differentiation Cell Proliferation Cell Survival Extracellular Matrix - metabolism marrow stromal cells Materials Testing Mice Microscopy, Electron, Scanning nanoporous alumina orthopedic biomaterials osseointegration Osteoblasts - metabolism Osteoblasts - ultrastructure Porosity Stromal Cells - metabolism Stromal Cells - ultrastructure |
title | Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteogenic%20differentiation%20of%20marrow%20stromal%20cells%20cultured%20on%20nanoporous%20alumina%20surfaces&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Popat,%20Ketul%20C.&rft.date=2007-03-15&rft.volume=80A&rft.issue=4&rft.spage=955&rft.epage=964&rft.pages=955-964&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31028&rft_dat=%3Cproquest_cross%3E68997488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68997488&rft_id=info:pmid/17089417&rfr_iscdi=true |