Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces

A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2007-03, Vol.80A (4), p.955-964
Hauptverfasser: Popat, Ketul C., Chatvanichkul, Kwan-Isara, Barnes, George L., Latempa Jr, Thomas Joseph, Grimes, Craigs A., Desai, Tejal A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 964
container_issue 4
container_start_page 955
container_title Journal of biomedical materials research. Part A
container_volume 80A
creator Popat, Ketul C.
Chatvanichkul, Kwan-Isara
Barnes, George L.
Latempa Jr, Thomas Joseph
Grimes, Craigs A.
Desai, Tejal A.
description A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
doi_str_mv 10.1002/jbm.a.31028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68997488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68997488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</originalsourceid><addsrcrecordid>eNp9kEtP3DAURq2KqjzaFXvkFZsq0ziJX0sYUQY0lC4KlbqxbvyoTJN4sBMB_x5PZ4Adq3sX5_t070HokJQzUpbVt7u2n8GsJmUlPqA9QmlVNJLRnfXeyKKuJNtF-yndZZiVtPqEdgkvhWwI30N_rtNow187eI2Nd85GO4weRh8GHBzuIcbwgNMYQw8d1rbrEtZTN07RGpyZAYawCjFMCUM39X4AnKboQNv0GX100CX7ZTsP0M33s1_zRbG8Pr-YnywL3dS1KFqgxtSghZPa0bZtSs0kZ8Ck4cxYaiwAZ9q4ylLuWqrBOQFECt3yVtOqPkDHm95VDPeTTaPqfVpfCoPNdykmpOSNEBn8ugF1DClF69Qq-vzhkyKlWqtUWaUC9V9lpo-2tVPbW_PGbt1lgGyAB9_Zp_e61OXp1Utpscn4rP3xNQPxn2K85lT9_nGulg3_uViwW7WsnwGAt5G0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68997488</pqid></control><display><type>article</type><title>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Popat, Ketul C. ; Chatvanichkul, Kwan-Isara ; Barnes, George L. ; Latempa Jr, Thomas Joseph ; Grimes, Craigs A. ; Desai, Tejal A.</creator><creatorcontrib>Popat, Ketul C. ; Chatvanichkul, Kwan-Isara ; Barnes, George L. ; Latempa Jr, Thomas Joseph ; Grimes, Craigs A. ; Desai, Tejal A.</creatorcontrib><description>A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.31028</identifier><identifier>PMID: 17089417</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alkaline Phosphatase - biosynthesis ; Aluminum Oxide ; Animals ; Biocompatible Materials ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Bone Marrow Cells - ultrastructure ; Cell Adhesion ; Cell Differentiation ; Cell Proliferation ; Cell Survival ; Extracellular Matrix - metabolism ; marrow stromal cells ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; nanoporous alumina ; orthopedic biomaterials ; osseointegration ; Osteoblasts - metabolism ; Osteoblasts - ultrastructure ; Porosity ; Stromal Cells - metabolism ; Stromal Cells - ultrastructure</subject><ispartof>Journal of biomedical materials research. Part A, 2007-03, Vol.80A (4), p.955-964</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</citedby><cites>FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.31028$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.31028$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17089417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Popat, Ketul C.</creatorcontrib><creatorcontrib>Chatvanichkul, Kwan-Isara</creatorcontrib><creatorcontrib>Barnes, George L.</creatorcontrib><creatorcontrib>Latempa Jr, Thomas Joseph</creatorcontrib><creatorcontrib>Grimes, Craigs A.</creatorcontrib><creatorcontrib>Desai, Tejal A.</creatorcontrib><title>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</description><subject>Alkaline Phosphatase - biosynthesis</subject><subject>Aluminum Oxide</subject><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Marrow Cells - ultrastructure</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Extracellular Matrix - metabolism</subject><subject>marrow stromal cells</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>nanoporous alumina</subject><subject>orthopedic biomaterials</subject><subject>osseointegration</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - ultrastructure</subject><subject>Porosity</subject><subject>Stromal Cells - metabolism</subject><subject>Stromal Cells - ultrastructure</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP3DAURq2KqjzaFXvkFZsq0ziJX0sYUQY0lC4KlbqxbvyoTJN4sBMB_x5PZ4Adq3sX5_t070HokJQzUpbVt7u2n8GsJmUlPqA9QmlVNJLRnfXeyKKuJNtF-yndZZiVtPqEdgkvhWwI30N_rtNow187eI2Nd85GO4weRh8GHBzuIcbwgNMYQw8d1rbrEtZTN07RGpyZAYawCjFMCUM39X4AnKboQNv0GX100CX7ZTsP0M33s1_zRbG8Pr-YnywL3dS1KFqgxtSghZPa0bZtSs0kZ8Ck4cxYaiwAZ9q4ylLuWqrBOQFECt3yVtOqPkDHm95VDPeTTaPqfVpfCoPNdykmpOSNEBn8ugF1DClF69Qq-vzhkyKlWqtUWaUC9V9lpo-2tVPbW_PGbt1lgGyAB9_Zp_e61OXp1Utpscn4rP3xNQPxn2K85lT9_nGulg3_uViwW7WsnwGAt5G0</recordid><startdate>20070315</startdate><enddate>20070315</enddate><creator>Popat, Ketul C.</creator><creator>Chatvanichkul, Kwan-Isara</creator><creator>Barnes, George L.</creator><creator>Latempa Jr, Thomas Joseph</creator><creator>Grimes, Craigs A.</creator><creator>Desai, Tejal A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070315</creationdate><title>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</title><author>Popat, Ketul C. ; Chatvanichkul, Kwan-Isara ; Barnes, George L. ; Latempa Jr, Thomas Joseph ; Grimes, Craigs A. ; Desai, Tejal A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4338-ba5dd3ac8f9cf5bb40c6976a69d76de5deaa76cdf2e57fb5caff8a198cb7bc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alkaline Phosphatase - biosynthesis</topic><topic>Aluminum Oxide</topic><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Marrow Cells - ultrastructure</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Extracellular Matrix - metabolism</topic><topic>marrow stromal cells</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>nanoporous alumina</topic><topic>orthopedic biomaterials</topic><topic>osseointegration</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - ultrastructure</topic><topic>Porosity</topic><topic>Stromal Cells - metabolism</topic><topic>Stromal Cells - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popat, Ketul C.</creatorcontrib><creatorcontrib>Chatvanichkul, Kwan-Isara</creatorcontrib><creatorcontrib>Barnes, George L.</creatorcontrib><creatorcontrib>Latempa Jr, Thomas Joseph</creatorcontrib><creatorcontrib>Grimes, Craigs A.</creatorcontrib><creatorcontrib>Desai, Tejal A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popat, Ketul C.</au><au>Chatvanichkul, Kwan-Isara</au><au>Barnes, George L.</au><au>Latempa Jr, Thomas Joseph</au><au>Grimes, Craigs A.</au><au>Desai, Tejal A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2007-03-15</date><risdate>2007</risdate><volume>80A</volume><issue>4</issue><spage>955</spage><epage>964</epage><pages>955-964</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two‐step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X‐ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3‐week study, the nanoporous alumina surfaces demonstrated ∼45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17089417</pmid><doi>10.1002/jbm.a.31028</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2007-03, Vol.80A (4), p.955-964
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_68997488
source MEDLINE; Access via Wiley Online Library
subjects Alkaline Phosphatase - biosynthesis
Aluminum Oxide
Animals
Biocompatible Materials
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Bone Marrow Cells - ultrastructure
Cell Adhesion
Cell Differentiation
Cell Proliferation
Cell Survival
Extracellular Matrix - metabolism
marrow stromal cells
Materials Testing
Mice
Microscopy, Electron, Scanning
nanoporous alumina
orthopedic biomaterials
osseointegration
Osteoblasts - metabolism
Osteoblasts - ultrastructure
Porosity
Stromal Cells - metabolism
Stromal Cells - ultrastructure
title Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteogenic%20differentiation%20of%20marrow%20stromal%20cells%20cultured%20on%20nanoporous%20alumina%20surfaces&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Popat,%20Ketul%20C.&rft.date=2007-03-15&rft.volume=80A&rft.issue=4&rft.spage=955&rft.epage=964&rft.pages=955-964&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31028&rft_dat=%3Cproquest_cross%3E68997488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68997488&rft_id=info:pmid/17089417&rfr_iscdi=true