On analytical approaches to epidemics on networks

One way to describe the spread of an infection on a network is by approximating the network by a random graph. However, the usual way of constructing a random graph does not give any control over the number of triangles in the graph, while these triangles will naturally arise in many networks (e.g....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical population biology 2007-03, Vol.71 (2), p.160-173
1. Verfasser: Trapman, Pieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 2
container_start_page 160
container_title Theoretical population biology
container_volume 71
creator Trapman, Pieter
description One way to describe the spread of an infection on a network is by approximating the network by a random graph. However, the usual way of constructing a random graph does not give any control over the number of triangles in the graph, while these triangles will naturally arise in many networks (e.g. in social networks). In this paper, random graphs with a given degree distribution and a given expected number of triangles are constructed. By using these random graphs we analyze the spread of two types of infection on a network: infections with a fixed infectious period and infections for which an infective individual will infect all of its susceptible neighbors or none. These two types of infection can be used to give upper and lower bounds for R 0 , the probability of extinction and other measures of dynamics of infections with more general infectious periods.
doi_str_mv 10.1016/j.tpb.2006.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68987776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040580906001626</els_id><sourcerecordid>68987776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ab0f2cc6205ef79de07d7d697b40228c049ea753e1bbddfbbd8d82b20f1516063</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwAWxQVuwSZpyHHbFCiJdUqRtYW449ES55Eaeg_j2uWokdbGY2594ZHcYuERIELG7WyTRUCQcoEsQEgB-xOUJZxJDy_JjNATKIcwnljJ15vwYAiWl6ymYoOOdSlHOGqy7SnW62kzO6ifQwjL027-SjqY9ocJZaZ3zUd1FH03c_fvhzdlLrxtPFYS_Y2-PD6_1zvFw9vdzfLWOTZXKKdQU1N6bgkFMtSksgrLBFKaoMwm0DWUla5ClhVVlbhyGt5BWHGnMsoEgX7HrfGz763JCfVOu8oabRHfUbrwpZSiHE_yCWuci5TAOIe9CMvfcj1WoYXavHrUJQO6FqrYJQtROqEFUQGjJXh_JN1ZL9TRwMBuB2D1Bw8eVoVN446gxZN5KZlO3dH_U_RbGFig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19575283</pqid></control><display><type>article</type><title>On analytical approaches to epidemics on networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Trapman, Pieter</creator><creatorcontrib>Trapman, Pieter</creatorcontrib><description>One way to describe the spread of an infection on a network is by approximating the network by a random graph. However, the usual way of constructing a random graph does not give any control over the number of triangles in the graph, while these triangles will naturally arise in many networks (e.g. in social networks). In this paper, random graphs with a given degree distribution and a given expected number of triangles are constructed. By using these random graphs we analyze the spread of two types of infection on a network: infections with a fixed infectious period and infections for which an infective individual will infect all of its susceptible neighbors or none. These two types of infection can be used to give upper and lower bounds for R 0 , the probability of extinction and other measures of dynamics of infections with more general infectious periods.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2006.11.002</identifier><identifier>PMID: 17222879</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Communicable Diseases - epidemiology ; Communicable Diseases - transmission ; Disease Outbreaks ; Epidemics ; Humans ; Mathematics ; Models, Statistical ; Neural Networks (Computer) ; Percolation ; Probability ; Random graphs ; Social Support</subject><ispartof>Theoretical population biology, 2007-03, Vol.71 (2), p.160-173</ispartof><rights>2006 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ab0f2cc6205ef79de07d7d697b40228c049ea753e1bbddfbbd8d82b20f1516063</citedby><cites>FETCH-LOGICAL-c448t-ab0f2cc6205ef79de07d7d697b40228c049ea753e1bbddfbbd8d82b20f1516063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040580906001626$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17222879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trapman, Pieter</creatorcontrib><title>On analytical approaches to epidemics on networks</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>One way to describe the spread of an infection on a network is by approximating the network by a random graph. However, the usual way of constructing a random graph does not give any control over the number of triangles in the graph, while these triangles will naturally arise in many networks (e.g. in social networks). In this paper, random graphs with a given degree distribution and a given expected number of triangles are constructed. By using these random graphs we analyze the spread of two types of infection on a network: infections with a fixed infectious period and infections for which an infective individual will infect all of its susceptible neighbors or none. These two types of infection can be used to give upper and lower bounds for R 0 , the probability of extinction and other measures of dynamics of infections with more general infectious periods.</description><subject>Communicable Diseases - epidemiology</subject><subject>Communicable Diseases - transmission</subject><subject>Disease Outbreaks</subject><subject>Epidemics</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Models, Statistical</subject><subject>Neural Networks (Computer)</subject><subject>Percolation</subject><subject>Probability</subject><subject>Random graphs</subject><subject>Social Support</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwAWxQVuwSZpyHHbFCiJdUqRtYW449ES55Eaeg_j2uWokdbGY2594ZHcYuERIELG7WyTRUCQcoEsQEgB-xOUJZxJDy_JjNATKIcwnljJ15vwYAiWl6ymYoOOdSlHOGqy7SnW62kzO6ifQwjL027-SjqY9ocJZaZ3zUd1FH03c_fvhzdlLrxtPFYS_Y2-PD6_1zvFw9vdzfLWOTZXKKdQU1N6bgkFMtSksgrLBFKaoMwm0DWUla5ClhVVlbhyGt5BWHGnMsoEgX7HrfGz763JCfVOu8oabRHfUbrwpZSiHE_yCWuci5TAOIe9CMvfcj1WoYXavHrUJQO6FqrYJQtROqEFUQGjJXh_JN1ZL9TRwMBuB2D1Bw8eVoVN446gxZN5KZlO3dH_U_RbGFig</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Trapman, Pieter</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>On analytical approaches to epidemics on networks</title><author>Trapman, Pieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ab0f2cc6205ef79de07d7d697b40228c049ea753e1bbddfbbd8d82b20f1516063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Communicable Diseases - epidemiology</topic><topic>Communicable Diseases - transmission</topic><topic>Disease Outbreaks</topic><topic>Epidemics</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Models, Statistical</topic><topic>Neural Networks (Computer)</topic><topic>Percolation</topic><topic>Probability</topic><topic>Random graphs</topic><topic>Social Support</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trapman, Pieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trapman, Pieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On analytical approaches to epidemics on networks</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>71</volume><issue>2</issue><spage>160</spage><epage>173</epage><pages>160-173</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>One way to describe the spread of an infection on a network is by approximating the network by a random graph. However, the usual way of constructing a random graph does not give any control over the number of triangles in the graph, while these triangles will naturally arise in many networks (e.g. in social networks). In this paper, random graphs with a given degree distribution and a given expected number of triangles are constructed. By using these random graphs we analyze the spread of two types of infection on a network: infections with a fixed infectious period and infections for which an infective individual will infect all of its susceptible neighbors or none. These two types of infection can be used to give upper and lower bounds for R 0 , the probability of extinction and other measures of dynamics of infections with more general infectious periods.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17222879</pmid><doi>10.1016/j.tpb.2006.11.002</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5809
ispartof Theoretical population biology, 2007-03, Vol.71 (2), p.160-173
issn 0040-5809
1096-0325
language eng
recordid cdi_proquest_miscellaneous_68987776
source MEDLINE; Elsevier ScienceDirect Journals
subjects Communicable Diseases - epidemiology
Communicable Diseases - transmission
Disease Outbreaks
Epidemics
Humans
Mathematics
Models, Statistical
Neural Networks (Computer)
Percolation
Probability
Random graphs
Social Support
title On analytical approaches to epidemics on networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20analytical%20approaches%20to%20epidemics%20on%20networks&rft.jtitle=Theoretical%20population%20biology&rft.au=Trapman,%20Pieter&rft.date=2007-03-01&rft.volume=71&rft.issue=2&rft.spage=160&rft.epage=173&rft.pages=160-173&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2006.11.002&rft_dat=%3Cproquest_cross%3E68987776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19575283&rft_id=info:pmid/17222879&rft_els_id=S0040580906001626&rfr_iscdi=true