Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction

A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2006-10, Vol.13 (8), p.1489-1502
Hauptverfasser: Mooney, Catherine, Vullo, Alessandro, Pollastri, Gianluca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1502
container_issue 8
container_start_page 1489
container_title Journal of computational biology
container_volume 13
creator Mooney, Catherine
Vullo, Alessandro
Pollastri, Gianluca
description A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple phi-psi angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66%, and 60% correct motif prediction on an independent test set for di-peptides (six classes), tri-peptides (eight classes) and tetra-peptides (14 classes), respectively, 28-30% above baseline statistical predictors. We then build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into a traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the "hard" CASP 3-class assignment, and 81.4% with a more lenient assignment, outperforming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. The structural motif predictor is publicly available at: http://distill.ucd.ie/porter+/.
doi_str_mv 10.1089/cmb.2006.13.1489
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68987752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19480999</sourcerecordid><originalsourceid>FETCH-LOGICAL-p240t-448b6b230ca360a5c80d8ff7534060061c2599c3cd5a4398f7c27d68c6b638ae3</originalsourceid><addsrcrecordid>eNqFkEtLxDAURrNQnHF070qycteaV_NYyuALBnSh65ImKUaatibpgP_egKO4c3Xh3sPh-y4AFxjVGEl1bUJXE4R4jWmNmVRHYI0R51VDhFiB05TeEcKUI3ECVlggjhVha7B_jlN2foQpx8XkJeoBhin7Hs7RWW-yn0ZYzmEZsrc-uDGVTYHmN1_NycM0a-Pg4LRNME_QhzlOe2dhcmYarY6fv2b3R3kGjns9JHd-mBvwenf7sn2odk_3j9ubXTUThnLFmOx4RygyuiTXjZHIyr4XDWWIl67YkEYpQ41tNKNK9sIQYbk0vONUakc34OrbW1J9LC7lNvhk3DDo0U1LarlUUoiG_AtixSRSShXw8gAuXXC2naMPpWX781L6BYbnebM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19480999</pqid></control><display><type>article</type><title>Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><creator>Mooney, Catherine ; Vullo, Alessandro ; Pollastri, Gianluca</creator><creatorcontrib>Mooney, Catherine ; Vullo, Alessandro ; Pollastri, Gianluca</creatorcontrib><description>A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple phi-psi angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66%, and 60% correct motif prediction on an independent test set for di-peptides (six classes), tri-peptides (eight classes) and tetra-peptides (14 classes), respectively, 28-30% above baseline statistical predictors. We then build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into a traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the "hard" CASP 3-class assignment, and 81.4% with a more lenient assignment, outperforming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. The structural motif predictor is publicly available at: http://distill.ucd.ie/porter+/.</description><identifier>ISSN: 1066-5277</identifier><identifier>DOI: 10.1089/cmb.2006.13.1489</identifier><identifier>PMID: 17061924</identifier><language>eng</language><publisher>United States</publisher><subject>Amino Acid Motifs ; Computational Biology - methods ; Databases, Protein ; Peptides - chemistry ; Protein Structure, Secondary ; Proteins - chemistry</subject><ispartof>Journal of computational biology, 2006-10, Vol.13 (8), p.1489-1502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17061924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mooney, Catherine</creatorcontrib><creatorcontrib>Vullo, Alessandro</creatorcontrib><creatorcontrib>Pollastri, Gianluca</creatorcontrib><title>Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple phi-psi angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66%, and 60% correct motif prediction on an independent test set for di-peptides (six classes), tri-peptides (eight classes) and tetra-peptides (14 classes), respectively, 28-30% above baseline statistical predictors. We then build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into a traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the "hard" CASP 3-class assignment, and 81.4% with a more lenient assignment, outperforming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. The structural motif predictor is publicly available at: http://distill.ucd.ie/porter+/.</description><subject>Amino Acid Motifs</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Peptides - chemistry</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><issn>1066-5277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAURrNQnHF070qycteaV_NYyuALBnSh65ImKUaatibpgP_egKO4c3Xh3sPh-y4AFxjVGEl1bUJXE4R4jWmNmVRHYI0R51VDhFiB05TeEcKUI3ECVlggjhVha7B_jlN2foQpx8XkJeoBhin7Hs7RWW-yn0ZYzmEZsrc-uDGVTYHmN1_NycM0a-Pg4LRNME_QhzlOe2dhcmYarY6fv2b3R3kGjns9JHd-mBvwenf7sn2odk_3j9ubXTUThnLFmOx4RygyuiTXjZHIyr4XDWWIl67YkEYpQ41tNKNK9sIQYbk0vONUakc34OrbW1J9LC7lNvhk3DDo0U1LarlUUoiG_AtixSRSShXw8gAuXXC2naMPpWX781L6BYbnebM</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Mooney, Catherine</creator><creator>Vullo, Alessandro</creator><creator>Pollastri, Gianluca</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction</title><author>Mooney, Catherine ; Vullo, Alessandro ; Pollastri, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p240t-448b6b230ca360a5c80d8ff7534060061c2599c3cd5a4398f7c27d68c6b638ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Motifs</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Peptides - chemistry</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mooney, Catherine</creatorcontrib><creatorcontrib>Vullo, Alessandro</creatorcontrib><creatorcontrib>Pollastri, Gianluca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mooney, Catherine</au><au>Vullo, Alessandro</au><au>Pollastri, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2006-10</date><risdate>2006</risdate><volume>13</volume><issue>8</issue><spage>1489</spage><epage>1502</epage><pages>1489-1502</pages><issn>1066-5277</issn><abstract>A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple phi-psi angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66%, and 60% correct motif prediction on an independent test set for di-peptides (six classes), tri-peptides (eight classes) and tetra-peptides (14 classes), respectively, 28-30% above baseline statistical predictors. We then build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into a traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the "hard" CASP 3-class assignment, and 81.4% with a more lenient assignment, outperforming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. The structural motif predictor is publicly available at: http://distill.ucd.ie/porter+/.</abstract><cop>United States</cop><pmid>17061924</pmid><doi>10.1089/cmb.2006.13.1489</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-5277
ispartof Journal of computational biology, 2006-10, Vol.13 (8), p.1489-1502
issn 1066-5277
language eng
recordid cdi_proquest_miscellaneous_68987752
source Mary Ann Liebert Online Subscription; MEDLINE
subjects Amino Acid Motifs
Computational Biology - methods
Databases, Protein
Peptides - chemistry
Protein Structure, Secondary
Proteins - chemistry
title Protein structural motif prediction in multidimensional phi-psi space leads to improved secondary structure prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20structural%20motif%20prediction%20in%20multidimensional%20phi-psi%20space%20leads%20to%20improved%20secondary%20structure%20prediction&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Mooney,%20Catherine&rft.date=2006-10&rft.volume=13&rft.issue=8&rft.spage=1489&rft.epage=1502&rft.pages=1489-1502&rft.issn=1066-5277&rft_id=info:doi/10.1089/cmb.2006.13.1489&rft_dat=%3Cproquest_pubme%3E19480999%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19480999&rft_id=info:pmid/17061924&rfr_iscdi=true