Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats

Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2006-11, Vol.15 (13), p.4243-4255
Hauptverfasser: REICHMAN, JAY R, WATRUD, LIDIA S, LEE, E. HENRY, BURDICK, CONNIE A, BOLLMAN, MIKE A, STORM, MARJORIE J, KING, GEORGE A, MALLORY-SMITH, CAROL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4255
container_issue 13
container_start_page 4243
container_title Molecular ecology
container_volume 15
creator REICHMAN, JAY R
WATRUD, LIDIA S
LEE, E. HENRY
BURDICK, CONNIE A
BOLLMAN, MIKE A
STORM, MARJORIE J
KING, GEORGE A
MALLORY-SMITH, CAROL
description Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate-resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS-positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen-mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short-term production can result in establishment of transgenic plants at multi-kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.
doi_str_mv 10.1111/j.1365-294X.2006.03072.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68982179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19851476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4872-9fa51aca6d4002813024119e24ca6c1b3afb0648795354cf42b91cbaddbd2f353</originalsourceid><addsrcrecordid>eNqNkk9v0zAYhy0EYmXwFcDigOCQ4P-JDzuMqhtIBYTYxG6WnTidS2oXOxHdt8ch1ZC4gC-2_D6_V7YfAwAxKnEeb7clpoIXRLKbkiAkSkRRRcrDA7C4LzwECyQFKTCq6Ql4ktIWIUwJ54_BCa4QZxyLBRhXadCmd-l2Z_0AQweHqH3aWO8aeGujcY1rbRFtchnMRBOt3Tu_gSbzm6hTgq_PNzGkwSWYhtAH7zobNVyXb6Dz0Aevc9mH3dRQGzfoIT0FjzrdJ_vsOJ-C64vV1fJ9sf58-WF5vi4aVlekkJ3mWDdatAwhUmOKCMNYWsLyXoMN1Z1BIqOSU86ajhEjcWN025qWdJTTU_Bq7ruP4cdo06B2LjW277W3YUxK1LImuJL_BLGsOWaVyODLv8BtGKPPl1AEoyofk7IM1TPU5HdJ0XZqH91OxzuFkZoEqq2aPKnJk5oEqt8C1SFHnx_7j2Zn2z_Bo7EMnM3AT9fbu_9urD6ultMq54s5n33aw31ex-9KVLTi6tunS_WOXX0hYnmhbjL_YuY7HVQ26ZK6_kryT0IYI8kJp78AiaHDHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210700234</pqid></control><display><type>article</type><title>Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>REICHMAN, JAY R ; WATRUD, LIDIA S ; LEE, E. HENRY ; BURDICK, CONNIE A ; BOLLMAN, MIKE A ; STORM, MARJORIE J ; KING, GEORGE A ; MALLORY-SMITH, CAROL</creator><creatorcontrib>REICHMAN, JAY R ; WATRUD, LIDIA S ; LEE, E. HENRY ; BURDICK, CONNIE A ; BOLLMAN, MIKE A ; STORM, MARJORIE J ; KING, GEORGE A ; MALLORY-SMITH, CAROL</creatorcontrib><description>Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate-resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS-positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen-mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short-term production can result in establishment of transgenic plants at multi-kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/j.1365-294X.2006.03072.x</identifier><identifier>PMID: 17054516</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Agriculture ; Agrostis ; Agrostis - genetics ; Agrostis - physiology ; Agrostis stolonifera ; CP4 EPSPS ; creeping bentgrass ; Genetics, Population ; Grasses ; Habitats ; Herbicide Resistance - genetics ; Herbicides ; Oregon ; Phylogeny ; Plant populations ; Plants, Genetically Modified ; stolonifera ; transgene escape ; Transgenic plants</subject><ispartof>Molecular ecology, 2006-11, Vol.15 (13), p.4243-4255</ispartof><rights>2006 The AuthorsJournal compilation © 2006 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4872-9fa51aca6d4002813024119e24ca6c1b3afb0648795354cf42b91cbaddbd2f353</citedby><cites>FETCH-LOGICAL-c4872-9fa51aca6d4002813024119e24ca6c1b3afb0648795354cf42b91cbaddbd2f353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-294X.2006.03072.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-294X.2006.03072.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17054516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>REICHMAN, JAY R</creatorcontrib><creatorcontrib>WATRUD, LIDIA S</creatorcontrib><creatorcontrib>LEE, E. HENRY</creatorcontrib><creatorcontrib>BURDICK, CONNIE A</creatorcontrib><creatorcontrib>BOLLMAN, MIKE A</creatorcontrib><creatorcontrib>STORM, MARJORIE J</creatorcontrib><creatorcontrib>KING, GEORGE A</creatorcontrib><creatorcontrib>MALLORY-SMITH, CAROL</creatorcontrib><title>Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate-resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS-positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen-mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short-term production can result in establishment of transgenic plants at multi-kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.</description><subject>Agriculture</subject><subject>Agrostis</subject><subject>Agrostis - genetics</subject><subject>Agrostis - physiology</subject><subject>Agrostis stolonifera</subject><subject>CP4 EPSPS</subject><subject>creeping bentgrass</subject><subject>Genetics, Population</subject><subject>Grasses</subject><subject>Habitats</subject><subject>Herbicide Resistance - genetics</subject><subject>Herbicides</subject><subject>Oregon</subject><subject>Phylogeny</subject><subject>Plant populations</subject><subject>Plants, Genetically Modified</subject><subject>stolonifera</subject><subject>transgene escape</subject><subject>Transgenic plants</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v0zAYhy0EYmXwFcDigOCQ4P-JDzuMqhtIBYTYxG6WnTidS2oXOxHdt8ch1ZC4gC-2_D6_V7YfAwAxKnEeb7clpoIXRLKbkiAkSkRRRcrDA7C4LzwECyQFKTCq6Ql4ktIWIUwJ54_BCa4QZxyLBRhXadCmd-l2Z_0AQweHqH3aWO8aeGujcY1rbRFtchnMRBOt3Tu_gSbzm6hTgq_PNzGkwSWYhtAH7zobNVyXb6Dz0Aevc9mH3dRQGzfoIT0FjzrdJ_vsOJ-C64vV1fJ9sf58-WF5vi4aVlekkJ3mWDdatAwhUmOKCMNYWsLyXoMN1Z1BIqOSU86ajhEjcWN025qWdJTTU_Bq7ruP4cdo06B2LjW277W3YUxK1LImuJL_BLGsOWaVyODLv8BtGKPPl1AEoyofk7IM1TPU5HdJ0XZqH91OxzuFkZoEqq2aPKnJk5oEqt8C1SFHnx_7j2Zn2z_Bo7EMnM3AT9fbu_9urD6ultMq54s5n33aw31ex-9KVLTi6tunS_WOXX0hYnmhbjL_YuY7HVQ26ZK6_kryT0IYI8kJp78AiaHDHg</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>REICHMAN, JAY R</creator><creator>WATRUD, LIDIA S</creator><creator>LEE, E. HENRY</creator><creator>BURDICK, CONNIE A</creator><creator>BOLLMAN, MIKE A</creator><creator>STORM, MARJORIE J</creator><creator>KING, GEORGE A</creator><creator>MALLORY-SMITH, CAROL</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope></search><sort><creationdate>200611</creationdate><title>Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title><author>REICHMAN, JAY R ; WATRUD, LIDIA S ; LEE, E. HENRY ; BURDICK, CONNIE A ; BOLLMAN, MIKE A ; STORM, MARJORIE J ; KING, GEORGE A ; MALLORY-SMITH, CAROL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4872-9fa51aca6d4002813024119e24ca6c1b3afb0648795354cf42b91cbaddbd2f353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agriculture</topic><topic>Agrostis</topic><topic>Agrostis - genetics</topic><topic>Agrostis - physiology</topic><topic>Agrostis stolonifera</topic><topic>CP4 EPSPS</topic><topic>creeping bentgrass</topic><topic>Genetics, Population</topic><topic>Grasses</topic><topic>Habitats</topic><topic>Herbicide Resistance - genetics</topic><topic>Herbicides</topic><topic>Oregon</topic><topic>Phylogeny</topic><topic>Plant populations</topic><topic>Plants, Genetically Modified</topic><topic>stolonifera</topic><topic>transgene escape</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>REICHMAN, JAY R</creatorcontrib><creatorcontrib>WATRUD, LIDIA S</creatorcontrib><creatorcontrib>LEE, E. HENRY</creatorcontrib><creatorcontrib>BURDICK, CONNIE A</creatorcontrib><creatorcontrib>BOLLMAN, MIKE A</creatorcontrib><creatorcontrib>STORM, MARJORIE J</creatorcontrib><creatorcontrib>KING, GEORGE A</creatorcontrib><creatorcontrib>MALLORY-SMITH, CAROL</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>REICHMAN, JAY R</au><au>WATRUD, LIDIA S</au><au>LEE, E. HENRY</au><au>BURDICK, CONNIE A</au><au>BOLLMAN, MIKE A</au><au>STORM, MARJORIE J</au><au>KING, GEORGE A</au><au>MALLORY-SMITH, CAROL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2006-11</date><risdate>2006</risdate><volume>15</volume><issue>13</issue><spage>4243</spage><epage>4255</epage><pages>4243-4255</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate-resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS-positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen-mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short-term production can result in establishment of transgenic plants at multi-kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>17054516</pmid><doi>10.1111/j.1365-294X.2006.03072.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2006-11, Vol.15 (13), p.4243-4255
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_68982179
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Agriculture
Agrostis
Agrostis - genetics
Agrostis - physiology
Agrostis stolonifera
CP4 EPSPS
creeping bentgrass
Genetics, Population
Grasses
Habitats
Herbicide Resistance - genetics
Herbicides
Oregon
Phylogeny
Plant populations
Plants, Genetically Modified
stolonifera
transgene escape
Transgenic plants
title Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20of%20transgenic%20herbicide-resistant%20creeping%20bentgrass%20(Agrostis%20stolonifera%20L.)%20in%20nonagronomic%20habitats&rft.jtitle=Molecular%20ecology&rft.au=REICHMAN,%20JAY%20R&rft.date=2006-11&rft.volume=15&rft.issue=13&rft.spage=4243&rft.epage=4255&rft.pages=4243-4255&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/j.1365-294X.2006.03072.x&rft_dat=%3Cproquest_cross%3E19851476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210700234&rft_id=info:pmid/17054516&rfr_iscdi=true