Flexible polyimide microelectrode array for in vivo recordings and current source density analysis

This work presents implantable, flexible polymer-based probes with embedded microelectrodes for acute and chronic neural recordings in vivo, as tested on rodents. Acute recordings using this array were done in mice under urethane anesthesia and compared to those made using silicon-based probes manuf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2007-03, Vol.22 (8), p.1783-1790
Hauptverfasser: Cheung, Karen C., Renaud, Philippe, Tanila, Heikki, Djupsund, Kaj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1790
container_issue 8
container_start_page 1783
container_title Biosensors & bioelectronics
container_volume 22
creator Cheung, Karen C.
Renaud, Philippe
Tanila, Heikki
Djupsund, Kaj
description This work presents implantable, flexible polymer-based probes with embedded microelectrodes for acute and chronic neural recordings in vivo, as tested on rodents. Acute recordings using this array were done in mice under urethane anesthesia and compared to those made using silicon-based probes manufactured at the Center for Neural Communication Technology, University of Michigan. The two electrode arrays yielded similar results. Recordings with chronically implanted polymer-based electrodes were performed for 60 days post-surgically in awake, behaving rats. The microelectrodes were used to monitor local field potentials and capture laminar differences in function of cortex and hippocampus, and produced response waveforms of undiminished amplitude and signal-to-noise ratios 8 weeks after chronic implantation. The polymer-based electrodes could also be connected to a lesion current to mark specific locations in the tissue. Current source density (CSD) analysis from the recordings depicted a source–sink-composition. Tissue response was assessed 8 weeks after insertion by immunochemical labeling with glial fibrillary acidic protein (GFAP) to identify astrocytes, and histological analysis showed minimal tissue reaction to the implanted structures.
doi_str_mv 10.1016/j.bios.2006.08.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68977539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566306004039</els_id><sourcerecordid>20479986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-76fbee3709cba176feabe129a303d1cd80d52dd58c0f4f24d487b4e4bee84cb53</originalsourceid><addsrcrecordid>eNqNkcGK1TAUhoMoznX0BVxIN7prPUmaJgE3MjgqDLjRdUiTU8mlba5Je7Fvb8q9MDt1FQ75_kPyf4S8ptBQoN37Y9OHmBsG0DWgGuDiCTlQJXndMi6ekgNo0dWi6_gNeZHzEQAk1fCc3FAJTDJBD6S_H_F36EesTnHcwhQ8VlNwKeKIbkmxjDYlu1VDTFWYq3M4xyqhi8mH-Weu7Owrt6aE81LluCaHlcc5h2UrV3bccsgvybPBjhlfXc9b8uP-0_e7L_XDt89f7z4-1K7VsNSyG3pELkG73tIyoe2RMm05cE-dV-AF814oB0M7sNa3SvYttiWkWtcLfkveXfaeUvy1Yl7MFLLDcbQzxjWbTmkpBdf_BNleUwfsP8BWaq26ArILWIrLOeFgTilMNm2GgtldmaPZXZndlQFliqsSenPdvvYT-sfIVU4B3l4Bm50dh2RnF_IjpwTjoPf_fLhwWNo9B0wmu4CzQx-KqcX4GP72jj98SrSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20479986</pqid></control><display><type>article</type><title>Flexible polyimide microelectrode array for in vivo recordings and current source density analysis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Cheung, Karen C. ; Renaud, Philippe ; Tanila, Heikki ; Djupsund, Kaj</creator><creatorcontrib>Cheung, Karen C. ; Renaud, Philippe ; Tanila, Heikki ; Djupsund, Kaj</creatorcontrib><description>This work presents implantable, flexible polymer-based probes with embedded microelectrodes for acute and chronic neural recordings in vivo, as tested on rodents. Acute recordings using this array were done in mice under urethane anesthesia and compared to those made using silicon-based probes manufactured at the Center for Neural Communication Technology, University of Michigan. The two electrode arrays yielded similar results. Recordings with chronically implanted polymer-based electrodes were performed for 60 days post-surgically in awake, behaving rats. The microelectrodes were used to monitor local field potentials and capture laminar differences in function of cortex and hippocampus, and produced response waveforms of undiminished amplitude and signal-to-noise ratios 8 weeks after chronic implantation. The polymer-based electrodes could also be connected to a lesion current to mark specific locations in the tissue. Current source density (CSD) analysis from the recordings depicted a source–sink-composition. Tissue response was assessed 8 weeks after insertion by immunochemical labeling with glial fibrillary acidic protein (GFAP) to identify astrocytes, and histological analysis showed minimal tissue reaction to the implanted structures.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2006.08.035</identifier><identifier>PMID: 17027251</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Animals ; Biological and medical sciences ; Biotechnology ; Cerebral Cortex - physiology ; Current source density ; Electrophysiology - instrumentation ; Flexible microelectrode array ; Fundamental and applied biological sciences. Psychology ; Hippocampus - physiology ; In vivo recording ; Laminar analysis ; Male ; Methods. Procedures. Technologies ; Mice ; Microelectrodes ; Others ; Rats ; Rats, Sprague-Dawley ; Various methods and equipments</subject><ispartof>Biosensors &amp; bioelectronics, 2007-03, Vol.22 (8), p.1783-1790</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-76fbee3709cba176feabe129a303d1cd80d52dd58c0f4f24d487b4e4bee84cb53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2006.08.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18523099$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17027251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheung, Karen C.</creatorcontrib><creatorcontrib>Renaud, Philippe</creatorcontrib><creatorcontrib>Tanila, Heikki</creatorcontrib><creatorcontrib>Djupsund, Kaj</creatorcontrib><title>Flexible polyimide microelectrode array for in vivo recordings and current source density analysis</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>This work presents implantable, flexible polymer-based probes with embedded microelectrodes for acute and chronic neural recordings in vivo, as tested on rodents. Acute recordings using this array were done in mice under urethane anesthesia and compared to those made using silicon-based probes manufactured at the Center for Neural Communication Technology, University of Michigan. The two electrode arrays yielded similar results. Recordings with chronically implanted polymer-based electrodes were performed for 60 days post-surgically in awake, behaving rats. The microelectrodes were used to monitor local field potentials and capture laminar differences in function of cortex and hippocampus, and produced response waveforms of undiminished amplitude and signal-to-noise ratios 8 weeks after chronic implantation. The polymer-based electrodes could also be connected to a lesion current to mark specific locations in the tissue. Current source density (CSD) analysis from the recordings depicted a source–sink-composition. Tissue response was assessed 8 weeks after insertion by immunochemical labeling with glial fibrillary acidic protein (GFAP) to identify astrocytes, and histological analysis showed minimal tissue reaction to the implanted structures.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cerebral Cortex - physiology</subject><subject>Current source density</subject><subject>Electrophysiology - instrumentation</subject><subject>Flexible microelectrode array</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus - physiology</subject><subject>In vivo recording</subject><subject>Laminar analysis</subject><subject>Male</subject><subject>Methods. Procedures. Technologies</subject><subject>Mice</subject><subject>Microelectrodes</subject><subject>Others</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Various methods and equipments</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcGK1TAUhoMoznX0BVxIN7prPUmaJgE3MjgqDLjRdUiTU8mlba5Je7Fvb8q9MDt1FQ75_kPyf4S8ptBQoN37Y9OHmBsG0DWgGuDiCTlQJXndMi6ekgNo0dWi6_gNeZHzEQAk1fCc3FAJTDJBD6S_H_F36EesTnHcwhQ8VlNwKeKIbkmxjDYlu1VDTFWYq3M4xyqhi8mH-Weu7Owrt6aE81LluCaHlcc5h2UrV3bccsgvybPBjhlfXc9b8uP-0_e7L_XDt89f7z4-1K7VsNSyG3pELkG73tIyoe2RMm05cE-dV-AF814oB0M7sNa3SvYttiWkWtcLfkveXfaeUvy1Yl7MFLLDcbQzxjWbTmkpBdf_BNleUwfsP8BWaq26ArILWIrLOeFgTilMNm2GgtldmaPZXZndlQFliqsSenPdvvYT-sfIVU4B3l4Bm50dh2RnF_IjpwTjoPf_fLhwWNo9B0wmu4CzQx-KqcX4GP72jj98SrSg</recordid><startdate>20070315</startdate><enddate>20070315</enddate><creator>Cheung, Karen C.</creator><creator>Renaud, Philippe</creator><creator>Tanila, Heikki</creator><creator>Djupsund, Kaj</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070315</creationdate><title>Flexible polyimide microelectrode array for in vivo recordings and current source density analysis</title><author>Cheung, Karen C. ; Renaud, Philippe ; Tanila, Heikki ; Djupsund, Kaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-76fbee3709cba176feabe129a303d1cd80d52dd58c0f4f24d487b4e4bee84cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cerebral Cortex - physiology</topic><topic>Current source density</topic><topic>Electrophysiology - instrumentation</topic><topic>Flexible microelectrode array</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus - physiology</topic><topic>In vivo recording</topic><topic>Laminar analysis</topic><topic>Male</topic><topic>Methods. Procedures. Technologies</topic><topic>Mice</topic><topic>Microelectrodes</topic><topic>Others</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheung, Karen C.</creatorcontrib><creatorcontrib>Renaud, Philippe</creatorcontrib><creatorcontrib>Tanila, Heikki</creatorcontrib><creatorcontrib>Djupsund, Kaj</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheung, Karen C.</au><au>Renaud, Philippe</au><au>Tanila, Heikki</au><au>Djupsund, Kaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible polyimide microelectrode array for in vivo recordings and current source density analysis</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2007-03-15</date><risdate>2007</risdate><volume>22</volume><issue>8</issue><spage>1783</spage><epage>1790</epage><pages>1783-1790</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>This work presents implantable, flexible polymer-based probes with embedded microelectrodes for acute and chronic neural recordings in vivo, as tested on rodents. Acute recordings using this array were done in mice under urethane anesthesia and compared to those made using silicon-based probes manufactured at the Center for Neural Communication Technology, University of Michigan. The two electrode arrays yielded similar results. Recordings with chronically implanted polymer-based electrodes were performed for 60 days post-surgically in awake, behaving rats. The microelectrodes were used to monitor local field potentials and capture laminar differences in function of cortex and hippocampus, and produced response waveforms of undiminished amplitude and signal-to-noise ratios 8 weeks after chronic implantation. The polymer-based electrodes could also be connected to a lesion current to mark specific locations in the tissue. Current source density (CSD) analysis from the recordings depicted a source–sink-composition. Tissue response was assessed 8 weeks after insertion by immunochemical labeling with glial fibrillary acidic protein (GFAP) to identify astrocytes, and histological analysis showed minimal tissue reaction to the implanted structures.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><pmid>17027251</pmid><doi>10.1016/j.bios.2006.08.035</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2007-03, Vol.22 (8), p.1783-1790
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_68977539
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Biological and medical sciences
Biotechnology
Cerebral Cortex - physiology
Current source density
Electrophysiology - instrumentation
Flexible microelectrode array
Fundamental and applied biological sciences. Psychology
Hippocampus - physiology
In vivo recording
Laminar analysis
Male
Methods. Procedures. Technologies
Mice
Microelectrodes
Others
Rats
Rats, Sprague-Dawley
Various methods and equipments
title Flexible polyimide microelectrode array for in vivo recordings and current source density analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20polyimide%20microelectrode%20array%20for%20in%20vivo%20recordings%20and%20current%20source%20density%20analysis&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Cheung,%20Karen%20C.&rft.date=2007-03-15&rft.volume=22&rft.issue=8&rft.spage=1783&rft.epage=1790&rft.pages=1783-1790&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2006.08.035&rft_dat=%3Cproquest_cross%3E20479986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20479986&rft_id=info:pmid/17027251&rft_els_id=S0956566306004039&rfr_iscdi=true