Regulation of P53 stability in p53 mutated human and mouse hepatoma cells
The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal...
Gespeichert in:
Veröffentlicht in: | International journal of cancer 2007-04, Vol.120 (7), p.1459-1464 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1464 |
---|---|
container_issue | 7 |
container_start_page | 1459 |
container_title | International journal of cancer |
container_volume | 120 |
creator | Hailfinger, Stephan Jaworski, Maike Marx‐Stoelting, Philip Wanke, Ines Schwarz, Michael |
description | The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/ijc.22519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68975532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68975532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFFurB_-A7EXBQ9qdJJvdHKX4USkooucwSWbtSj5qNkH6701NoCdPAzMPM8PL2CWIOQjhL-xXNvd9CfERm4KIlSd8kMds2s-EpyCIJuzMuS8hAKQIT9kElC-kBD1lqzf67ApsbV3x2vBXGXDXYmoL2-64rfi2b5Rdiy3lfNOVWHGscl7WnSO-oS22dYk8o6Jw5-zEYOHoYqwz9vFw_7588tYvj6vl3drLAq1jL9KoMiIZmjyOY0xTIJUHoOMQAQlDP0gjKZTQmCtBuYoMmADSXCufBGQmmLGbYe-2qb87cm1SWrf_ACvq30oiHSspA7-HtwPMmtq5hkyybWyJzS4BkexzS_rckr_cens1Lu3SkvKDHIPqwfUI0GVYmAarzLqD0zLUIFXvFoP7sQXt_r-YrJ6Xw-lfNxaC4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68975532</pqid></control><display><type>article</type><title>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hailfinger, Stephan ; Jaworski, Maike ; Marx‐Stoelting, Philip ; Wanke, Ines ; Schwarz, Michael</creator><creatorcontrib>Hailfinger, Stephan ; Jaworski, Maike ; Marx‐Stoelting, Philip ; Wanke, Ines ; Schwarz, Michael</creatorcontrib><description>The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.22519</identifier><identifier>PMID: 17205518</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Apoptosis - physiology ; Apoptosis - radiation effects ; Biological and medical sciences ; Blotting, Western ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - metabolism ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; DFX ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene Expression Regulation, Neoplastic ; hepatoma cells ; Humans ; Immunoprecipitation ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; MDM2 ; Medical sciences ; Mice ; Mutation - genetics ; p53 mutation ; Proto-Oncogene Proteins c-mdm2 - genetics ; Proto-Oncogene Proteins c-mdm2 - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; ROS ; Tumor Cells, Cultured - metabolism ; Tumor Cells, Cultured - radiation effects ; Tumor Suppressor Protein p53 - metabolism ; Tumors ; Ultraviolet Rays ; UV irradiation</subject><ispartof>International journal of cancer, 2007-04, Vol.120 (7), p.1459-1464</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>(c) 2006 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</citedby><cites>FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.22519$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.22519$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18548157$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17205518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hailfinger, Stephan</creatorcontrib><creatorcontrib>Jaworski, Maike</creatorcontrib><creatorcontrib>Marx‐Stoelting, Philip</creatorcontrib><creatorcontrib>Wanke, Ines</creatorcontrib><creatorcontrib>Schwarz, Michael</creatorcontrib><title>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Apoptosis - radiation effects</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>DFX</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>hepatoma cells</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>MDM2</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mutation - genetics</subject><subject>p53 mutation</subject><subject>Proto-Oncogene Proteins c-mdm2 - genetics</subject><subject>Proto-Oncogene Proteins c-mdm2 - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>ROS</subject><subject>Tumor Cells, Cultured - metabolism</subject><subject>Tumor Cells, Cultured - radiation effects</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><subject>Ultraviolet Rays</subject><subject>UV irradiation</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1Lw0AQBuBFFFurB_-A7EXBQ9qdJJvdHKX4USkooucwSWbtSj5qNkH6701NoCdPAzMPM8PL2CWIOQjhL-xXNvd9CfERm4KIlSd8kMds2s-EpyCIJuzMuS8hAKQIT9kElC-kBD1lqzf67ApsbV3x2vBXGXDXYmoL2-64rfi2b5Rdiy3lfNOVWHGscl7WnSO-oS22dYk8o6Jw5-zEYOHoYqwz9vFw_7588tYvj6vl3drLAq1jL9KoMiIZmjyOY0xTIJUHoOMQAQlDP0gjKZTQmCtBuYoMmADSXCufBGQmmLGbYe-2qb87cm1SWrf_ACvq30oiHSspA7-HtwPMmtq5hkyybWyJzS4BkexzS_rckr_cens1Lu3SkvKDHIPqwfUI0GVYmAarzLqD0zLUIFXvFoP7sQXt_r-YrJ6Xw-lfNxaC4w</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Hailfinger, Stephan</creator><creator>Jaworski, Maike</creator><creator>Marx‐Stoelting, Philip</creator><creator>Wanke, Ines</creator><creator>Schwarz, Michael</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070401</creationdate><title>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</title><author>Hailfinger, Stephan ; Jaworski, Maike ; Marx‐Stoelting, Philip ; Wanke, Ines ; Schwarz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Apoptosis - radiation effects</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>DFX</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>hepatoma cells</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>MDM2</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mutation - genetics</topic><topic>p53 mutation</topic><topic>Proto-Oncogene Proteins c-mdm2 - genetics</topic><topic>Proto-Oncogene Proteins c-mdm2 - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>ROS</topic><topic>Tumor Cells, Cultured - metabolism</topic><topic>Tumor Cells, Cultured - radiation effects</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><topic>Ultraviolet Rays</topic><topic>UV irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hailfinger, Stephan</creatorcontrib><creatorcontrib>Jaworski, Maike</creatorcontrib><creatorcontrib>Marx‐Stoelting, Philip</creatorcontrib><creatorcontrib>Wanke, Ines</creatorcontrib><creatorcontrib>Schwarz, Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hailfinger, Stephan</au><au>Jaworski, Maike</au><au>Marx‐Stoelting, Philip</au><au>Wanke, Ines</au><au>Schwarz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>120</volume><issue>7</issue><spage>1459</spage><epage>1464</epage><pages>1459-1464</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17205518</pmid><doi>10.1002/ijc.22519</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7136 |
ispartof | International journal of cancer, 2007-04, Vol.120 (7), p.1459-1464 |
issn | 0020-7136 1097-0215 |
language | eng |
recordid | cdi_proquest_miscellaneous_68975532 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Apoptosis - physiology Apoptosis - radiation effects Biological and medical sciences Blotting, Western Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - metabolism Cyclin-Dependent Kinase Inhibitor p21 - genetics Cyclin-Dependent Kinase Inhibitor p21 - metabolism DFX Gastroenterology. Liver. Pancreas. Abdomen Gene Expression Regulation, Neoplastic hepatoma cells Humans Immunoprecipitation Liver Neoplasms - genetics Liver Neoplasms - metabolism Liver. Biliary tract. Portal circulation. Exocrine pancreas MDM2 Medical sciences Mice Mutation - genetics p53 mutation Proto-Oncogene Proteins c-mdm2 - genetics Proto-Oncogene Proteins c-mdm2 - metabolism Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA, Messenger - metabolism ROS Tumor Cells, Cultured - metabolism Tumor Cells, Cultured - radiation effects Tumor Suppressor Protein p53 - metabolism Tumors Ultraviolet Rays UV irradiation |
title | Regulation of P53 stability in p53 mutated human and mouse hepatoma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20P53%20stability%20in%20p53%20mutated%20human%20and%20mouse%20hepatoma%20cells&rft.jtitle=International%20journal%20of%20cancer&rft.au=Hailfinger,%20Stephan&rft.date=2007-04-01&rft.volume=120&rft.issue=7&rft.spage=1459&rft.epage=1464&rft.pages=1459-1464&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.22519&rft_dat=%3Cproquest_cross%3E68975532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68975532&rft_id=info:pmid/17205518&rfr_iscdi=true |