Regulation of P53 stability in p53 mutated human and mouse hepatoma cells

The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2007-04, Vol.120 (7), p.1459-1464
Hauptverfasser: Hailfinger, Stephan, Jaworski, Maike, Marx‐Stoelting, Philip, Wanke, Ines, Schwarz, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1464
container_issue 7
container_start_page 1459
container_title International journal of cancer
container_volume 120
creator Hailfinger, Stephan
Jaworski, Maike
Marx‐Stoelting, Philip
Wanke, Ines
Schwarz, Michael
description The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc.
doi_str_mv 10.1002/ijc.22519
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68975532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68975532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFFurB_-A7EXBQ9qdJJvdHKX4USkooucwSWbtSj5qNkH6701NoCdPAzMPM8PL2CWIOQjhL-xXNvd9CfERm4KIlSd8kMds2s-EpyCIJuzMuS8hAKQIT9kElC-kBD1lqzf67ApsbV3x2vBXGXDXYmoL2-64rfi2b5Rdiy3lfNOVWHGscl7WnSO-oS22dYk8o6Jw5-zEYOHoYqwz9vFw_7588tYvj6vl3drLAq1jL9KoMiIZmjyOY0xTIJUHoOMQAQlDP0gjKZTQmCtBuYoMmADSXCufBGQmmLGbYe-2qb87cm1SWrf_ACvq30oiHSspA7-HtwPMmtq5hkyybWyJzS4BkexzS_rckr_cens1Lu3SkvKDHIPqwfUI0GVYmAarzLqD0zLUIFXvFoP7sQXt_r-YrJ6Xw-lfNxaC4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68975532</pqid></control><display><type>article</type><title>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hailfinger, Stephan ; Jaworski, Maike ; Marx‐Stoelting, Philip ; Wanke, Ines ; Schwarz, Michael</creator><creatorcontrib>Hailfinger, Stephan ; Jaworski, Maike ; Marx‐Stoelting, Philip ; Wanke, Ines ; Schwarz, Michael</creatorcontrib><description>The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.22519</identifier><identifier>PMID: 17205518</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Apoptosis - physiology ; Apoptosis - radiation effects ; Biological and medical sciences ; Blotting, Western ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - metabolism ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; DFX ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene Expression Regulation, Neoplastic ; hepatoma cells ; Humans ; Immunoprecipitation ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; MDM2 ; Medical sciences ; Mice ; Mutation - genetics ; p53 mutation ; Proto-Oncogene Proteins c-mdm2 - genetics ; Proto-Oncogene Proteins c-mdm2 - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; ROS ; Tumor Cells, Cultured - metabolism ; Tumor Cells, Cultured - radiation effects ; Tumor Suppressor Protein p53 - metabolism ; Tumors ; Ultraviolet Rays ; UV irradiation</subject><ispartof>International journal of cancer, 2007-04, Vol.120 (7), p.1459-1464</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>(c) 2006 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</citedby><cites>FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.22519$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.22519$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18548157$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17205518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hailfinger, Stephan</creatorcontrib><creatorcontrib>Jaworski, Maike</creatorcontrib><creatorcontrib>Marx‐Stoelting, Philip</creatorcontrib><creatorcontrib>Wanke, Ines</creatorcontrib><creatorcontrib>Schwarz, Michael</creatorcontrib><title>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Apoptosis - radiation effects</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>DFX</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>hepatoma cells</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>MDM2</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mutation - genetics</subject><subject>p53 mutation</subject><subject>Proto-Oncogene Proteins c-mdm2 - genetics</subject><subject>Proto-Oncogene Proteins c-mdm2 - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>ROS</subject><subject>Tumor Cells, Cultured - metabolism</subject><subject>Tumor Cells, Cultured - radiation effects</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><subject>Ultraviolet Rays</subject><subject>UV irradiation</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1Lw0AQBuBFFFurB_-A7EXBQ9qdJJvdHKX4USkooucwSWbtSj5qNkH6701NoCdPAzMPM8PL2CWIOQjhL-xXNvd9CfERm4KIlSd8kMds2s-EpyCIJuzMuS8hAKQIT9kElC-kBD1lqzf67ApsbV3x2vBXGXDXYmoL2-64rfi2b5Rdiy3lfNOVWHGscl7WnSO-oS22dYk8o6Jw5-zEYOHoYqwz9vFw_7588tYvj6vl3drLAq1jL9KoMiIZmjyOY0xTIJUHoOMQAQlDP0gjKZTQmCtBuYoMmADSXCufBGQmmLGbYe-2qb87cm1SWrf_ACvq30oiHSspA7-HtwPMmtq5hkyybWyJzS4BkexzS_rckr_cens1Lu3SkvKDHIPqwfUI0GVYmAarzLqD0zLUIFXvFoP7sQXt_r-YrJ6Xw-lfNxaC4w</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Hailfinger, Stephan</creator><creator>Jaworski, Maike</creator><creator>Marx‐Stoelting, Philip</creator><creator>Wanke, Ines</creator><creator>Schwarz, Michael</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070401</creationdate><title>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</title><author>Hailfinger, Stephan ; Jaworski, Maike ; Marx‐Stoelting, Philip ; Wanke, Ines ; Schwarz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-68a7cee54fd999abb1e7d31894a1aea423b650708ad70ed76f1f31bd872e01cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Apoptosis - radiation effects</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>DFX</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>hepatoma cells</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>MDM2</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mutation - genetics</topic><topic>p53 mutation</topic><topic>Proto-Oncogene Proteins c-mdm2 - genetics</topic><topic>Proto-Oncogene Proteins c-mdm2 - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>ROS</topic><topic>Tumor Cells, Cultured - metabolism</topic><topic>Tumor Cells, Cultured - radiation effects</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><topic>Ultraviolet Rays</topic><topic>UV irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hailfinger, Stephan</creatorcontrib><creatorcontrib>Jaworski, Maike</creatorcontrib><creatorcontrib>Marx‐Stoelting, Philip</creatorcontrib><creatorcontrib>Wanke, Ines</creatorcontrib><creatorcontrib>Schwarz, Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hailfinger, Stephan</au><au>Jaworski, Maike</au><au>Marx‐Stoelting, Philip</au><au>Wanke, Ines</au><au>Schwarz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of P53 stability in p53 mutated human and mouse hepatoma cells</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>120</volume><issue>7</issue><spage>1459</spage><epage>1464</epage><pages>1459-1464</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV‐irradiation. Similarly, UV‐exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV‐irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV‐irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1–2 hr after exposure of cells. There were no signs of apoptosis of H2O2‐exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17205518</pmid><doi>10.1002/ijc.22519</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2007-04, Vol.120 (7), p.1459-1464
issn 0020-7136
1097-0215
language eng
recordid cdi_proquest_miscellaneous_68975532
source MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Animals
Apoptosis - physiology
Apoptosis - radiation effects
Biological and medical sciences
Blotting, Western
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - metabolism
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
DFX
Gastroenterology. Liver. Pancreas. Abdomen
Gene Expression Regulation, Neoplastic
hepatoma cells
Humans
Immunoprecipitation
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Liver. Biliary tract. Portal circulation. Exocrine pancreas
MDM2
Medical sciences
Mice
Mutation - genetics
p53 mutation
Proto-Oncogene Proteins c-mdm2 - genetics
Proto-Oncogene Proteins c-mdm2 - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Messenger - metabolism
ROS
Tumor Cells, Cultured - metabolism
Tumor Cells, Cultured - radiation effects
Tumor Suppressor Protein p53 - metabolism
Tumors
Ultraviolet Rays
UV irradiation
title Regulation of P53 stability in p53 mutated human and mouse hepatoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20P53%20stability%20in%20p53%20mutated%20human%20and%20mouse%20hepatoma%20cells&rft.jtitle=International%20journal%20of%20cancer&rft.au=Hailfinger,%20Stephan&rft.date=2007-04-01&rft.volume=120&rft.issue=7&rft.spage=1459&rft.epage=1464&rft.pages=1459-1464&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/ijc.22519&rft_dat=%3Cproquest_cross%3E68975532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68975532&rft_id=info:pmid/17205518&rfr_iscdi=true