Global Effects of Mistranslation from an Editing Defect in Mammalian Cells

Aminoacyl-tRNA synthetases prevent mistranslation, or genetic code ambiguity, through specialized editing reactions. Mutations that disrupt editing in bacteria adversely affect cell growth and viability, and recent work in the mouse supports the idea that translational errors caused by an editing de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biology 2006-10, Vol.13 (10), p.1091-1100
Hauptverfasser: Nangle, Leslie A., Motta, Candace M., Schimmel, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aminoacyl-tRNA synthetases prevent mistranslation, or genetic code ambiguity, through specialized editing reactions. Mutations that disrupt editing in bacteria adversely affect cell growth and viability, and recent work in the mouse supports the idea that translational errors caused by an editing defect lead to a neurological disease-like phenotype. To further investigate the connection of mistranslation to cell pathology, we introduced an inducible transgene expressing an editing-deficient valyl-tRNA synthetase into mammalian cells. Introducing mistranslation precipitated a disruption of cell morphology and membrane blebbing, accompanied by activation of caspase-3, consistent with an apoptotic response. Addition of a noncanonical amino acid that is misactivated, but not cleared, by the editing-defective enzyme exacerbated these effects. A special ambiguity-detecting sensor provided direct readout of mistranslation in vivo, supporting the possibility that decreased translational fidelity could be associated with disease.
ISSN:1074-5521
1879-1301
DOI:10.1016/j.chembiol.2006.08.011