Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry
We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85°C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the sl...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2007-02, Vol.74 (2), p.474-483 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 483 |
---|---|
container_issue | 2 |
container_start_page | 474 |
container_title | Applied microbiology and biotechnology |
container_volume | 74 |
creator | Yokoyama, Hiroshi Waki, Miyoko Moriya, Naoko Yasuda, Tomoko Tanaka, Yasuo Haga, Kiyonori |
description | We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85°C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75°C (392 and 248 ml H₂ per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60°C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75°C was not detected, at least for 24 days. At both 60 and 75°C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75°C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA. |
doi_str_mv | 10.1007/s00253-006-0647-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68967855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19579987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6ec5b55d4237c2bf519b8caa13aeb910f66c57f87b0c4c931e5f0f46edde52753</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgiruu_gAvGgS9tabS-TzKsn7Aggfdc0inKzO9dHfGpJthTv51M87IghdPoeCpClUvIS-BvQfG9IfCGJdtw5hqmBK6EY_IJYiW1wrEY3LJQMtGS2suyLNS7hkDbpR6Si5AMw5GmUvy6yZGDAtNkUbME86LX4Y00wWnHWa_rBlpLbeHPqcNznSXU7-GPyTmNNGQ9nTvy4K0jGvOB9od6FqGeUP97DGnbgh0GkJOcUzZ0_2wbIc6ffvXPydPoh8Lvji_V-Tu082P6y_N7bfPX68_3jZBaL00CoPspOwFb3XgXZRgOxO8h9ZjZ4FFpYLU0eiOBRFsCygji0Jh36PkWrZX5N1pbl3g54plcdNQAo6jnzGtxSljlTby_xCs1NYaXeGbf-B9WvNcl3AKrDbKcqgITqheoJSM0e3yMPl8cMDcMUN3ytDVDN0xQydqz6vz4LWbsH_oOIdWwdsz8CX4MWY_h6E8OCM5KHZ0r08u-uT8Jldz950zaOu_ghsr29-Nv6_6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>619786921</pqid></control><display><type>article</type><title>Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yokoyama, Hiroshi ; Waki, Miyoko ; Moriya, Naoko ; Yasuda, Tomoko ; Tanaka, Yasuo ; Haga, Kiyonori</creator><creatorcontrib>Yokoyama, Hiroshi ; Waki, Miyoko ; Moriya, Naoko ; Yasuda, Tomoko ; Tanaka, Yasuo ; Haga, Kiyonori</creatorcontrib><description>We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85°C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75°C (392 and 248 ml H₂ per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60°C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75°C was not detected, at least for 24 days. At both 60 and 75°C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75°C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-006-0647-4</identifier><identifier>PMID: 17021868</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Anaerobic microflora ; Animal wastes ; Animals ; Bacteria, Anaerobic - classification ; Bacteria, Anaerobic - genetics ; Bacteria, Anaerobic - metabolism ; Biological and medical sciences ; Biotechnology ; Cattle ; Clostridium thermocellum ; Clostridium thermocellum - classification ; Clostridium thermocellum - genetics ; Clostridium thermocellum - metabolism ; Cow waste ; Dairy cattle ; Dairy wastes ; DNA, Bacterial - analysis ; Electrophoresis, Polyacrylamide Gel - methods ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; Hydrogen ; Hydrogen - metabolism ; Hydrogen production ; Manure - microbiology ; Molecular Sequence Data ; RNA, Ribosomal, 16S - genetics ; Slurries ; Thermophilic condition ; Volatile solids</subject><ispartof>Applied microbiology and biotechnology, 2007-02, Vol.74 (2), p.474-483</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6ec5b55d4237c2bf519b8caa13aeb910f66c57f87b0c4c931e5f0f46edde52753</citedby><cites>FETCH-LOGICAL-c477t-6ec5b55d4237c2bf519b8caa13aeb910f66c57f87b0c4c931e5f0f46edde52753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18521608$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17021868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yokoyama, Hiroshi</creatorcontrib><creatorcontrib>Waki, Miyoko</creatorcontrib><creatorcontrib>Moriya, Naoko</creatorcontrib><creatorcontrib>Yasuda, Tomoko</creatorcontrib><creatorcontrib>Tanaka, Yasuo</creatorcontrib><creatorcontrib>Haga, Kiyonori</creatorcontrib><title>Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85°C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75°C (392 and 248 ml H₂ per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60°C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75°C was not detected, at least for 24 days. At both 60 and 75°C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75°C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.</description><subject>Anaerobic microflora</subject><subject>Animal wastes</subject><subject>Animals</subject><subject>Bacteria, Anaerobic - classification</subject><subject>Bacteria, Anaerobic - genetics</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Clostridium thermocellum</subject><subject>Clostridium thermocellum - classification</subject><subject>Clostridium thermocellum - genetics</subject><subject>Clostridium thermocellum - metabolism</subject><subject>Cow waste</subject><subject>Dairy cattle</subject><subject>Dairy wastes</subject><subject>DNA, Bacterial - analysis</subject><subject>Electrophoresis, Polyacrylamide Gel - methods</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen production</subject><subject>Manure - microbiology</subject><subject>Molecular Sequence Data</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Slurries</subject><subject>Thermophilic condition</subject><subject>Volatile solids</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0U2LFDEQBuAgiruu_gAvGgS9tabS-TzKsn7Aggfdc0inKzO9dHfGpJthTv51M87IghdPoeCpClUvIS-BvQfG9IfCGJdtw5hqmBK6EY_IJYiW1wrEY3LJQMtGS2suyLNS7hkDbpR6Si5AMw5GmUvy6yZGDAtNkUbME86LX4Y00wWnHWa_rBlpLbeHPqcNznSXU7-GPyTmNNGQ9nTvy4K0jGvOB9od6FqGeUP97DGnbgh0GkJOcUzZ0_2wbIc6ffvXPydPoh8Lvji_V-Tu082P6y_N7bfPX68_3jZBaL00CoPspOwFb3XgXZRgOxO8h9ZjZ4FFpYLU0eiOBRFsCygji0Jh36PkWrZX5N1pbl3g54plcdNQAo6jnzGtxSljlTby_xCs1NYaXeGbf-B9WvNcl3AKrDbKcqgITqheoJSM0e3yMPl8cMDcMUN3ytDVDN0xQydqz6vz4LWbsH_oOIdWwdsz8CX4MWY_h6E8OCM5KHZ0r08u-uT8Jldz950zaOu_ghsr29-Nv6_6</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Yokoyama, Hiroshi</creator><creator>Waki, Miyoko</creator><creator>Moriya, Naoko</creator><creator>Yasuda, Tomoko</creator><creator>Tanaka, Yasuo</creator><creator>Haga, Kiyonori</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20070201</creationdate><title>Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry</title><author>Yokoyama, Hiroshi ; Waki, Miyoko ; Moriya, Naoko ; Yasuda, Tomoko ; Tanaka, Yasuo ; Haga, Kiyonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6ec5b55d4237c2bf519b8caa13aeb910f66c57f87b0c4c931e5f0f46edde52753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Anaerobic microflora</topic><topic>Animal wastes</topic><topic>Animals</topic><topic>Bacteria, Anaerobic - classification</topic><topic>Bacteria, Anaerobic - genetics</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Clostridium thermocellum</topic><topic>Clostridium thermocellum - classification</topic><topic>Clostridium thermocellum - genetics</topic><topic>Clostridium thermocellum - metabolism</topic><topic>Cow waste</topic><topic>Dairy cattle</topic><topic>Dairy wastes</topic><topic>DNA, Bacterial - analysis</topic><topic>Electrophoresis, Polyacrylamide Gel - methods</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen production</topic><topic>Manure - microbiology</topic><topic>Molecular Sequence Data</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Slurries</topic><topic>Thermophilic condition</topic><topic>Volatile solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokoyama, Hiroshi</creatorcontrib><creatorcontrib>Waki, Miyoko</creatorcontrib><creatorcontrib>Moriya, Naoko</creatorcontrib><creatorcontrib>Yasuda, Tomoko</creatorcontrib><creatorcontrib>Tanaka, Yasuo</creatorcontrib><creatorcontrib>Haga, Kiyonori</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokoyama, Hiroshi</au><au>Waki, Miyoko</au><au>Moriya, Naoko</au><au>Yasuda, Tomoko</au><au>Tanaka, Yasuo</au><au>Haga, Kiyonori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry</atitle><jtitle>Applied microbiology and biotechnology</jtitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2007-02-01</date><risdate>2007</risdate><volume>74</volume><issue>2</issue><spage>474</spage><epage>483</epage><pages>474-483</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85°C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75°C (392 and 248 ml H₂ per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60°C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75°C was not detected, at least for 24 days. At both 60 and 75°C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75°C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.</abstract><cop>Berlin</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17021868</pmid><doi>10.1007/s00253-006-0647-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2007-02, Vol.74 (2), p.474-483 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_68967855 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Anaerobic microflora Animal wastes Animals Bacteria, Anaerobic - classification Bacteria, Anaerobic - genetics Bacteria, Anaerobic - metabolism Biological and medical sciences Biotechnology Cattle Clostridium thermocellum Clostridium thermocellum - classification Clostridium thermocellum - genetics Clostridium thermocellum - metabolism Cow waste Dairy cattle Dairy wastes DNA, Bacterial - analysis Electrophoresis, Polyacrylamide Gel - methods Fermentation Fundamental and applied biological sciences. Psychology Hot Temperature Hydrogen Hydrogen - metabolism Hydrogen production Manure - microbiology Molecular Sequence Data RNA, Ribosomal, 16S - genetics Slurries Thermophilic condition Volatile solids |
title | Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20fermentation%20temperature%20on%20hydrogen%20production%20from%20cow%20waste%20slurry%20by%20using%20anaerobic%20microflora%20within%20the%20slurry&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Yokoyama,%20Hiroshi&rft.date=2007-02-01&rft.volume=74&rft.issue=2&rft.spage=474&rft.epage=483&rft.pages=474-483&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-006-0647-4&rft_dat=%3Cproquest_cross%3E19579987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=619786921&rft_id=info:pmid/17021868&rfr_iscdi=true |