Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells
Proteomics has the potential to provide answers in cancer pathogenesis and to direct targeted therapy through the comprehensive analysis of protein expression levels and activation status. The realization of this potential requires the development of new, rapid, high-throughput technologies for perf...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2006-10, Vol.5 (10), p.2512-2521 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteomics has the potential to provide answers in cancer pathogenesis and to direct targeted therapy through the comprehensive
analysis of protein expression levels and activation status. The realization of this potential requires the development of
new, rapid, high-throughput technologies for performing protein arrays on patient samples, as well as novel analytic techniques
to interpret them. Herein, we describe the validation and robustness of using reverse phase protein arrays (RPPA) for the
analysis of primary acute myelogenous leukemia samples as well as leukemic and normal stem cells. In this report, we show
that array printing, detection, amplification, and staining precision are very high, reproducible, and that they correlate
with traditional Western blotting. Using replicates of the same sample on the same and/or separate arrays, or using separate
protein samples prepared from the same starting sample, the intra- and interarray reproducibility was extremely high. No statistically
significant difference in protein signal intensities could be detected within the array setups. The activation status (phosphorylation)
was maintained in experiments testing delayed processing and preparation from multiple freeze-thawed samples. Differences
in protein expression could reliably be detected in as few as three cell protein equivalents. RPPA prepared from rare populations
of normal and leukemic stem cells were successfully done and showed differences from bulk populations of cells. Examples show
how RPPAs are ideally suited for the large-scale analysis of target identification, validation, and drug discovery. In summary,
RPPA is a highly reliable, reproducible, high-throughput system that allows for the rapid large-scale proteomic analysis of
protein expression and phosphorylation state in primary acute myelogenous leukemia cells, cell lines, and in human stem cells.
[Mol Cancer Ther 2006;5(10):2512–21] |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-06-0334 |