Anatomic consequences of intrinsic tongue muscle activation

Departments of 1 Physiology and 2 Neurobiology, The University of Arizona, Tucson, Arizona Submitted 29 March 2006 ; accepted in final form 28 June 2006 We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2006-11, Vol.101 (5), p.1377-1385
Hauptverfasser: Bailey, E. Fiona, Huang, Yu-Hsien, Fregosi, Ralph F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1385
container_issue 5
container_start_page 1377
container_title Journal of applied physiology (1985)
container_volume 101
creator Bailey, E. Fiona
Huang, Yu-Hsien
Fregosi, Ralph F
description Departments of 1 Physiology and 2 Neurobiology, The University of Arizona, Tucson, Arizona Submitted 29 March 2006 ; accepted in final form 28 June 2006 We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to –5.0 cmH 2 O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency. sleep apnea; magnetic resonance imaging; velopharynx Address for reprint requests and other correspondence: E. F. Bailey, Dept. of Physiology, College of Medicine, The Univ. of Arizona, Tucson, AZ 85721-0093 (e-mail: ebailey{at}u.arizona.edu )
doi_str_mv 10.1152/japplphysiol.00379.2006
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_proquest_miscellaneous_68955114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1165586191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-314c52a85f31174d71a7c28661267288d82bd201c866789d7bcdfb57ecd867a3</originalsourceid><addsrcrecordid>eNp1kNFq2zAUhsVYabK2r7CZQQe7cKojW5bCrkpo1kKgN7kXiiwnCrLkSXbXvH2VxpAxqG4EOt9_9PMh9A3wDICSu73sOtvtDtF4O8O4YPMZwbj6hKZpSnKoMHxGU84ozhnlbIK-xLjHGMqSwiWaQMUJpaScol_3Tva-NSpT3kX9Z9BO6Zj5JjOuD8bFNOm92w46a4eorM6k6s2L7I131-iikTbqm_G-Quvlw3rxmK-efz8t7le5olD2eQGlokRy2hQArKwZSKYIryogFSOc15xsaoJBpSfG5zXbqLrZUKZVzSsmiyv047S2Cz71i71oTVTaWum0H6Ko-JxSgDKB3_8D934ILlUTJB0AXuAEsROkgo8x6EZ0wbQyHARgcXQr_nUr3t2Ko9uU_DquHzatrs-5UWYCbkdARiVtE6RTJp45TgpG6Dxx9MTtzHb31wQtxt_89iCWg7Vr_dofawAGQQUUjImublLu58e5hIszX7wBDUSmtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222211830</pqid></control><display><type>article</type><title>Anatomic consequences of intrinsic tongue muscle activation</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bailey, E. Fiona ; Huang, Yu-Hsien ; Fregosi, Ralph F</creator><creatorcontrib>Bailey, E. Fiona ; Huang, Yu-Hsien ; Fregosi, Ralph F</creatorcontrib><description>Departments of 1 Physiology and 2 Neurobiology, The University of Arizona, Tucson, Arizona Submitted 29 March 2006 ; accepted in final form 28 June 2006 We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to –5.0 cmH 2 O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency. sleep apnea; magnetic resonance imaging; velopharynx Address for reprint requests and other correspondence: E. F. Bailey, Dept. of Physiology, College of Medicine, The Univ. of Arizona, Tucson, AZ 85721-0093 (e-mail: ebailey{at}u.arizona.edu )</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00379.2006</identifier><identifier>PMID: 16825524</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: Am Physiological Soc</publisher><subject>Airway management ; Airway Obstruction - pathology ; Airway Obstruction - physiopathology ; Airway Resistance - physiology ; Animals ; Biological and medical sciences ; Electric Stimulation ; Fundamental and applied biological sciences. Psychology ; Hypoglossal Nerve - physiology ; Magnetic Resonance Imaging ; Male ; Muscle Denervation ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Muscular system ; Nervous system ; Pharynx - pathology ; Pharynx - physiology ; Rats ; Rats, Sprague-Dawley ; Respiration ; Respiratory Mechanics ; Sleep apnea ; Sleep Apnea Syndromes - pathology ; Sleep Apnea Syndromes - physiopathology ; Tongue ; Tongue - innervation ; Tongue - physiology ; Velopharyngeal Insufficiency - pathology ; Velopharyngeal Insufficiency - physiopathology</subject><ispartof>Journal of applied physiology (1985), 2006-11, Vol.101 (5), p.1377-1385</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright American Physiological Society Nov 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-314c52a85f31174d71a7c28661267288d82bd201c866789d7bcdfb57ecd867a3</citedby><cites>FETCH-LOGICAL-c514t-314c52a85f31174d71a7c28661267288d82bd201c866789d7bcdfb57ecd867a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18237259$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16825524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bailey, E. Fiona</creatorcontrib><creatorcontrib>Huang, Yu-Hsien</creatorcontrib><creatorcontrib>Fregosi, Ralph F</creatorcontrib><title>Anatomic consequences of intrinsic tongue muscle activation</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Departments of 1 Physiology and 2 Neurobiology, The University of Arizona, Tucson, Arizona Submitted 29 March 2006 ; accepted in final form 28 June 2006 We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to –5.0 cmH 2 O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency. sleep apnea; magnetic resonance imaging; velopharynx Address for reprint requests and other correspondence: E. F. Bailey, Dept. of Physiology, College of Medicine, The Univ. of Arizona, Tucson, AZ 85721-0093 (e-mail: ebailey{at}u.arizona.edu )</description><subject>Airway management</subject><subject>Airway Obstruction - pathology</subject><subject>Airway Obstruction - physiopathology</subject><subject>Airway Resistance - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Electric Stimulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hypoglossal Nerve - physiology</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Muscle Denervation</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscular system</subject><subject>Nervous system</subject><subject>Pharynx - pathology</subject><subject>Pharynx - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Respiration</subject><subject>Respiratory Mechanics</subject><subject>Sleep apnea</subject><subject>Sleep Apnea Syndromes - pathology</subject><subject>Sleep Apnea Syndromes - physiopathology</subject><subject>Tongue</subject><subject>Tongue - innervation</subject><subject>Tongue - physiology</subject><subject>Velopharyngeal Insufficiency - pathology</subject><subject>Velopharyngeal Insufficiency - physiopathology</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kNFq2zAUhsVYabK2r7CZQQe7cKojW5bCrkpo1kKgN7kXiiwnCrLkSXbXvH2VxpAxqG4EOt9_9PMh9A3wDICSu73sOtvtDtF4O8O4YPMZwbj6hKZpSnKoMHxGU84ozhnlbIK-xLjHGMqSwiWaQMUJpaScol_3Tva-NSpT3kX9Z9BO6Zj5JjOuD8bFNOm92w46a4eorM6k6s2L7I131-iikTbqm_G-Quvlw3rxmK-efz8t7le5olD2eQGlokRy2hQArKwZSKYIryogFSOc15xsaoJBpSfG5zXbqLrZUKZVzSsmiyv047S2Cz71i71oTVTaWum0H6Ko-JxSgDKB3_8D934ILlUTJB0AXuAEsROkgo8x6EZ0wbQyHARgcXQr_nUr3t2Ko9uU_DquHzatrs-5UWYCbkdARiVtE6RTJp45TgpG6Dxx9MTtzHb31wQtxt_89iCWg7Vr_dofawAGQQUUjImublLu58e5hIszX7wBDUSmtw</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Bailey, E. Fiona</creator><creator>Huang, Yu-Hsien</creator><creator>Fregosi, Ralph F</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>Anatomic consequences of intrinsic tongue muscle activation</title><author>Bailey, E. Fiona ; Huang, Yu-Hsien ; Fregosi, Ralph F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-314c52a85f31174d71a7c28661267288d82bd201c866789d7bcdfb57ecd867a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Airway management</topic><topic>Airway Obstruction - pathology</topic><topic>Airway Obstruction - physiopathology</topic><topic>Airway Resistance - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Electric Stimulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hypoglossal Nerve - physiology</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Muscle Denervation</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscular system</topic><topic>Nervous system</topic><topic>Pharynx - pathology</topic><topic>Pharynx - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Respiration</topic><topic>Respiratory Mechanics</topic><topic>Sleep apnea</topic><topic>Sleep Apnea Syndromes - pathology</topic><topic>Sleep Apnea Syndromes - physiopathology</topic><topic>Tongue</topic><topic>Tongue - innervation</topic><topic>Tongue - physiology</topic><topic>Velopharyngeal Insufficiency - pathology</topic><topic>Velopharyngeal Insufficiency - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, E. Fiona</creatorcontrib><creatorcontrib>Huang, Yu-Hsien</creatorcontrib><creatorcontrib>Fregosi, Ralph F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, E. Fiona</au><au>Huang, Yu-Hsien</au><au>Fregosi, Ralph F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomic consequences of intrinsic tongue muscle activation</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>101</volume><issue>5</issue><spage>1377</spage><epage>1385</epage><pages>1377-1385</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>Departments of 1 Physiology and 2 Neurobiology, The University of Arizona, Tucson, Arizona Submitted 29 March 2006 ; accepted in final form 28 June 2006 We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to –5.0 cmH 2 O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency. sleep apnea; magnetic resonance imaging; velopharynx Address for reprint requests and other correspondence: E. F. Bailey, Dept. of Physiology, College of Medicine, The Univ. of Arizona, Tucson, AZ 85721-0093 (e-mail: ebailey{at}u.arizona.edu )</abstract><cop>Bethesda, MD</cop><pub>Am Physiological Soc</pub><pmid>16825524</pmid><doi>10.1152/japplphysiol.00379.2006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2006-11, Vol.101 (5), p.1377-1385
issn 8750-7587
1522-1601
language eng
recordid cdi_proquest_miscellaneous_68955114
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Airway management
Airway Obstruction - pathology
Airway Obstruction - physiopathology
Airway Resistance - physiology
Animals
Biological and medical sciences
Electric Stimulation
Fundamental and applied biological sciences. Psychology
Hypoglossal Nerve - physiology
Magnetic Resonance Imaging
Male
Muscle Denervation
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Muscular system
Nervous system
Pharynx - pathology
Pharynx - physiology
Rats
Rats, Sprague-Dawley
Respiration
Respiratory Mechanics
Sleep apnea
Sleep Apnea Syndromes - pathology
Sleep Apnea Syndromes - physiopathology
Tongue
Tongue - innervation
Tongue - physiology
Velopharyngeal Insufficiency - pathology
Velopharyngeal Insufficiency - physiopathology
title Anatomic consequences of intrinsic tongue muscle activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomic%20consequences%20of%20intrinsic%20tongue%20muscle%20activation&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Bailey,%20E.%20Fiona&rft.date=2006-11-01&rft.volume=101&rft.issue=5&rft.spage=1377&rft.epage=1385&rft.pages=1377-1385&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/japplphysiol.00379.2006&rft_dat=%3Cproquest_highw%3E1165586191%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222211830&rft_id=info:pmid/16825524&rfr_iscdi=true