Involvement of sphingolipids in apoptin-induced cell killing
The potential anti-tumor agent Apoptin activates apoptosis in many human cancers and transformed cell lines, but is believed to be less potent in primary cells. Although caspase 3 is activated during apoptin-induced apoptosis, the mechanism of tumor cell killing remains elusive. We now show that apo...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2006-11, Vol.14 (5), p.627-636 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 636 |
---|---|
container_issue | 5 |
container_start_page | 627 |
container_title | Molecular therapy |
container_volume | 14 |
creator | Liu, Xiang Zeidan, Youssef H Elojeimy, Saeed Holman, David H El-Zawahry, Ahmed M Guo, Gui-Wen Bielawska, Alicja Bielawski, Jacek Szulc, Zdzislaw Rubinchik, Semyon Dong, Jian-Yun Keane, Thomas E Tavassoli, Mahvash Hannun, Yusuf A Norris, James S |
description | The potential anti-tumor agent Apoptin activates apoptosis in many human cancers and transformed cell lines, but is believed to be less potent in primary cells. Although caspase 3 is activated during apoptin-induced apoptosis, the mechanism of tumor cell killing remains elusive. We now show that apoptin-mediated cell death involves modulation of the sphingomyelin-ceramide pathway. Treating cells with Ad-GFPApoptin resulted in increased ceramide accumulation and enhanced expression of acid sphingomyelinase (ASMase) with a concomitant increase in ASMase activity and decreased sphingomyelin. Using confocal microscopy, ASMase, normally present in the endosomal/lysosomal compartment, was observed to translocate to the cell's periphery. Cotreatment of Ad-GFPApoptin-infected cells with the ASMase inhibitor desipramine (2.5 muM) attenuated (30%; P |
doi_str_mv | 10.1016/j.ymthe.2006.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68943628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4074025031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-74e47530b9e5d0bae23aa8888fba17f75714ea2a68b734b151eb4426660298dd3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7rr6CwQpCN5aJ2k-WvAiix8LC170HNI2dVPbpDbtwv57W3dR8OJcZg7PvMy8L0KXGCIMmN9W0a7pNzoiADwCEQHgIzTHjLAQgNDjnxnzGTrzvhonzFJ-imaYp4RjAnN0t7JbV291o20fuDLw7cbYd1eb1hQ-MDZQrWt7Y0NjiyHXRZDrug4-TF2P2Dk6KVXt9cWhL9Db48Pr8jlcvzytlvfrMKcg-lBQTQWLIUs1KyBTmsRKJWOVmcKiFExgqhVRPMlETDPMsM4oJZxzIGlSFPEC3ex12859Dtr3sjF-OkRZ7QYveZLSmJPkXxCnlHEh6Ahe_wErN3R2fEJikZIEEiEmuXhP5Z3zvtOlbDvTqG4nMcgpA1nJ7wzklIEEIUeLx62rg_aQNbr43TmYHn8BnC-Chg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792808778</pqid></control><display><type>article</type><title>Involvement of sphingolipids in apoptin-induced cell killing</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Xiang ; Zeidan, Youssef H ; Elojeimy, Saeed ; Holman, David H ; El-Zawahry, Ahmed M ; Guo, Gui-Wen ; Bielawska, Alicja ; Bielawski, Jacek ; Szulc, Zdzislaw ; Rubinchik, Semyon ; Dong, Jian-Yun ; Keane, Thomas E ; Tavassoli, Mahvash ; Hannun, Yusuf A ; Norris, James S</creator><creatorcontrib>Liu, Xiang ; Zeidan, Youssef H ; Elojeimy, Saeed ; Holman, David H ; El-Zawahry, Ahmed M ; Guo, Gui-Wen ; Bielawska, Alicja ; Bielawski, Jacek ; Szulc, Zdzislaw ; Rubinchik, Semyon ; Dong, Jian-Yun ; Keane, Thomas E ; Tavassoli, Mahvash ; Hannun, Yusuf A ; Norris, James S</creatorcontrib><description>The potential anti-tumor agent Apoptin activates apoptosis in many human cancers and transformed cell lines, but is believed to be less potent in primary cells. Although caspase 3 is activated during apoptin-induced apoptosis, the mechanism of tumor cell killing remains elusive. We now show that apoptin-mediated cell death involves modulation of the sphingomyelin-ceramide pathway. Treating cells with Ad-GFPApoptin resulted in increased ceramide accumulation and enhanced expression of acid sphingomyelinase (ASMase) with a concomitant increase in ASMase activity and decreased sphingomyelin. Using confocal microscopy, ASMase, normally present in the endosomal/lysosomal compartment, was observed to translocate to the cell's periphery. Cotreatment of Ad-GFPApoptin-infected cells with the ASMase inhibitor desipramine (2.5 muM) attenuated (30%; P<0.01) apoptin-induced cell death. Apoptin was also able to induce a significant decline in sphingosine content by inhibition of ceramide deacylation through down-regulation of acid ceramidase at the protein level. Supporting the role of ceramide in apoptin action, treatment of cells with the combination of an exogenous cell-permeable ceramide analog (C6-ceramide) and Ad-GFPApoptin infection yielded a significant increase (P<0.01) in apoptosis over either treatment modality alone. Together, these data suggest that apoptin modulates ceramide/sphingolipid metabolism as part of its mechanism of action.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2006.07.001</identifier><identifier>PMID: 16926120</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Acids ; Adenoviridae - genetics ; Apoptosis ; Apoptosis - drug effects ; Cancer therapies ; Capsid Proteins - genetics ; Capsid Proteins - metabolism ; Cell death ; Cell growth ; Cell Line, Tumor ; Cell Membrane - metabolism ; Ceramides - biosynthesis ; Cyclin-dependent kinases ; Desipramine - pharmacology ; Down-Regulation ; Endosomes - metabolism ; Galactosylgalactosylglucosylceramidase - metabolism ; Gene Expression ; Gene therapy ; Genes, Reporter - genetics ; Humans ; Immunology ; Infections ; Kinases ; Lysosomes - metabolism ; Male ; Metabolism ; Phosphatase ; Prostate cancer ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Protein Transport ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Signal transduction ; Sphingolipids - metabolism ; Sphingomyelin Phosphodiesterase - metabolism ; Up-Regulation</subject><ispartof>Molecular therapy, 2006-11, Vol.14 (5), p.627-636</ispartof><rights>Copyright Nature Publishing Group Nov 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-74e47530b9e5d0bae23aa8888fba17f75714ea2a68b734b151eb4426660298dd3</citedby><cites>FETCH-LOGICAL-c407t-74e47530b9e5d0bae23aa8888fba17f75714ea2a68b734b151eb4426660298dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16926120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Zeidan, Youssef H</creatorcontrib><creatorcontrib>Elojeimy, Saeed</creatorcontrib><creatorcontrib>Holman, David H</creatorcontrib><creatorcontrib>El-Zawahry, Ahmed M</creatorcontrib><creatorcontrib>Guo, Gui-Wen</creatorcontrib><creatorcontrib>Bielawska, Alicja</creatorcontrib><creatorcontrib>Bielawski, Jacek</creatorcontrib><creatorcontrib>Szulc, Zdzislaw</creatorcontrib><creatorcontrib>Rubinchik, Semyon</creatorcontrib><creatorcontrib>Dong, Jian-Yun</creatorcontrib><creatorcontrib>Keane, Thomas E</creatorcontrib><creatorcontrib>Tavassoli, Mahvash</creatorcontrib><creatorcontrib>Hannun, Yusuf A</creatorcontrib><creatorcontrib>Norris, James S</creatorcontrib><title>Involvement of sphingolipids in apoptin-induced cell killing</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>The potential anti-tumor agent Apoptin activates apoptosis in many human cancers and transformed cell lines, but is believed to be less potent in primary cells. Although caspase 3 is activated during apoptin-induced apoptosis, the mechanism of tumor cell killing remains elusive. We now show that apoptin-mediated cell death involves modulation of the sphingomyelin-ceramide pathway. Treating cells with Ad-GFPApoptin resulted in increased ceramide accumulation and enhanced expression of acid sphingomyelinase (ASMase) with a concomitant increase in ASMase activity and decreased sphingomyelin. Using confocal microscopy, ASMase, normally present in the endosomal/lysosomal compartment, was observed to translocate to the cell's periphery. Cotreatment of Ad-GFPApoptin-infected cells with the ASMase inhibitor desipramine (2.5 muM) attenuated (30%; P<0.01) apoptin-induced cell death. Apoptin was also able to induce a significant decline in sphingosine content by inhibition of ceramide deacylation through down-regulation of acid ceramidase at the protein level. Supporting the role of ceramide in apoptin action, treatment of cells with the combination of an exogenous cell-permeable ceramide analog (C6-ceramide) and Ad-GFPApoptin infection yielded a significant increase (P<0.01) in apoptosis over either treatment modality alone. Together, these data suggest that apoptin modulates ceramide/sphingolipid metabolism as part of its mechanism of action.</description><subject>Acids</subject><subject>Adenoviridae - genetics</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cancer therapies</subject><subject>Capsid Proteins - genetics</subject><subject>Capsid Proteins - metabolism</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>Ceramides - biosynthesis</subject><subject>Cyclin-dependent kinases</subject><subject>Desipramine - pharmacology</subject><subject>Down-Regulation</subject><subject>Endosomes - metabolism</subject><subject>Galactosylgalactosylglucosylceramidase - metabolism</subject><subject>Gene Expression</subject><subject>Gene therapy</subject><subject>Genes, Reporter - genetics</subject><subject>Humans</subject><subject>Immunology</subject><subject>Infections</subject><subject>Kinases</subject><subject>Lysosomes - metabolism</subject><subject>Male</subject><subject>Metabolism</subject><subject>Phosphatase</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Sphingolipids - metabolism</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><subject>Up-Regulation</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1LxDAQhoMo7rr6CwQpCN5aJ2k-WvAiix8LC170HNI2dVPbpDbtwv57W3dR8OJcZg7PvMy8L0KXGCIMmN9W0a7pNzoiADwCEQHgIzTHjLAQgNDjnxnzGTrzvhonzFJ-imaYp4RjAnN0t7JbV291o20fuDLw7cbYd1eb1hQ-MDZQrWt7Y0NjiyHXRZDrug4-TF2P2Dk6KVXt9cWhL9Db48Pr8jlcvzytlvfrMKcg-lBQTQWLIUs1KyBTmsRKJWOVmcKiFExgqhVRPMlETDPMsM4oJZxzIGlSFPEC3ex12859Dtr3sjF-OkRZ7QYveZLSmJPkXxCnlHEh6Ahe_wErN3R2fEJikZIEEiEmuXhP5Z3zvtOlbDvTqG4nMcgpA1nJ7wzklIEEIUeLx62rg_aQNbr43TmYHn8BnC-Chg</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Liu, Xiang</creator><creator>Zeidan, Youssef H</creator><creator>Elojeimy, Saeed</creator><creator>Holman, David H</creator><creator>El-Zawahry, Ahmed M</creator><creator>Guo, Gui-Wen</creator><creator>Bielawska, Alicja</creator><creator>Bielawski, Jacek</creator><creator>Szulc, Zdzislaw</creator><creator>Rubinchik, Semyon</creator><creator>Dong, Jian-Yun</creator><creator>Keane, Thomas E</creator><creator>Tavassoli, Mahvash</creator><creator>Hannun, Yusuf A</creator><creator>Norris, James S</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200611</creationdate><title>Involvement of sphingolipids in apoptin-induced cell killing</title><author>Liu, Xiang ; Zeidan, Youssef H ; Elojeimy, Saeed ; Holman, David H ; El-Zawahry, Ahmed M ; Guo, Gui-Wen ; Bielawska, Alicja ; Bielawski, Jacek ; Szulc, Zdzislaw ; Rubinchik, Semyon ; Dong, Jian-Yun ; Keane, Thomas E ; Tavassoli, Mahvash ; Hannun, Yusuf A ; Norris, James S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-74e47530b9e5d0bae23aa8888fba17f75714ea2a68b734b151eb4426660298dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acids</topic><topic>Adenoviridae - genetics</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cancer therapies</topic><topic>Capsid Proteins - genetics</topic><topic>Capsid Proteins - metabolism</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>Ceramides - biosynthesis</topic><topic>Cyclin-dependent kinases</topic><topic>Desipramine - pharmacology</topic><topic>Down-Regulation</topic><topic>Endosomes - metabolism</topic><topic>Galactosylgalactosylglucosylceramidase - metabolism</topic><topic>Gene Expression</topic><topic>Gene therapy</topic><topic>Genes, Reporter - genetics</topic><topic>Humans</topic><topic>Immunology</topic><topic>Infections</topic><topic>Kinases</topic><topic>Lysosomes - metabolism</topic><topic>Male</topic><topic>Metabolism</topic><topic>Phosphatase</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Sphingolipids - metabolism</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Zeidan, Youssef H</creatorcontrib><creatorcontrib>Elojeimy, Saeed</creatorcontrib><creatorcontrib>Holman, David H</creatorcontrib><creatorcontrib>El-Zawahry, Ahmed M</creatorcontrib><creatorcontrib>Guo, Gui-Wen</creatorcontrib><creatorcontrib>Bielawska, Alicja</creatorcontrib><creatorcontrib>Bielawski, Jacek</creatorcontrib><creatorcontrib>Szulc, Zdzislaw</creatorcontrib><creatorcontrib>Rubinchik, Semyon</creatorcontrib><creatorcontrib>Dong, Jian-Yun</creatorcontrib><creatorcontrib>Keane, Thomas E</creatorcontrib><creatorcontrib>Tavassoli, Mahvash</creatorcontrib><creatorcontrib>Hannun, Yusuf A</creatorcontrib><creatorcontrib>Norris, James S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiang</au><au>Zeidan, Youssef H</au><au>Elojeimy, Saeed</au><au>Holman, David H</au><au>El-Zawahry, Ahmed M</au><au>Guo, Gui-Wen</au><au>Bielawska, Alicja</au><au>Bielawski, Jacek</au><au>Szulc, Zdzislaw</au><au>Rubinchik, Semyon</au><au>Dong, Jian-Yun</au><au>Keane, Thomas E</au><au>Tavassoli, Mahvash</au><au>Hannun, Yusuf A</au><au>Norris, James S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of sphingolipids in apoptin-induced cell killing</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2006-11</date><risdate>2006</risdate><volume>14</volume><issue>5</issue><spage>627</spage><epage>636</epage><pages>627-636</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>The potential anti-tumor agent Apoptin activates apoptosis in many human cancers and transformed cell lines, but is believed to be less potent in primary cells. Although caspase 3 is activated during apoptin-induced apoptosis, the mechanism of tumor cell killing remains elusive. We now show that apoptin-mediated cell death involves modulation of the sphingomyelin-ceramide pathway. Treating cells with Ad-GFPApoptin resulted in increased ceramide accumulation and enhanced expression of acid sphingomyelinase (ASMase) with a concomitant increase in ASMase activity and decreased sphingomyelin. Using confocal microscopy, ASMase, normally present in the endosomal/lysosomal compartment, was observed to translocate to the cell's periphery. Cotreatment of Ad-GFPApoptin-infected cells with the ASMase inhibitor desipramine (2.5 muM) attenuated (30%; P<0.01) apoptin-induced cell death. Apoptin was also able to induce a significant decline in sphingosine content by inhibition of ceramide deacylation through down-regulation of acid ceramidase at the protein level. Supporting the role of ceramide in apoptin action, treatment of cells with the combination of an exogenous cell-permeable ceramide analog (C6-ceramide) and Ad-GFPApoptin infection yielded a significant increase (P<0.01) in apoptosis over either treatment modality alone. Together, these data suggest that apoptin modulates ceramide/sphingolipid metabolism as part of its mechanism of action.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>16926120</pmid><doi>10.1016/j.ymthe.2006.07.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2006-11, Vol.14 (5), p.627-636 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_proquest_miscellaneous_68943628 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Acids Adenoviridae - genetics Apoptosis Apoptosis - drug effects Cancer therapies Capsid Proteins - genetics Capsid Proteins - metabolism Cell death Cell growth Cell Line, Tumor Cell Membrane - metabolism Ceramides - biosynthesis Cyclin-dependent kinases Desipramine - pharmacology Down-Regulation Endosomes - metabolism Galactosylgalactosylglucosylceramidase - metabolism Gene Expression Gene therapy Genes, Reporter - genetics Humans Immunology Infections Kinases Lysosomes - metabolism Male Metabolism Phosphatase Prostate cancer Prostatic Neoplasms - genetics Prostatic Neoplasms - metabolism Prostatic Neoplasms - pathology Protein Transport Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Signal transduction Sphingolipids - metabolism Sphingomyelin Phosphodiesterase - metabolism Up-Regulation |
title | Involvement of sphingolipids in apoptin-induced cell killing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20sphingolipids%20in%20apoptin-induced%20cell%20killing&rft.jtitle=Molecular%20therapy&rft.au=Liu,%20Xiang&rft.date=2006-11&rft.volume=14&rft.issue=5&rft.spage=627&rft.epage=636&rft.pages=627-636&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2006.07.001&rft_dat=%3Cproquest_cross%3E4074025031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792808778&rft_id=info:pmid/16926120&rfr_iscdi=true |