Hydrodynamic self-consistent field theory for inhomogeneous polymer melts
We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbit...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2006-09, Vol.97 (11), p.114501-114501, Article 114501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114501 |
---|---|
container_issue | 11 |
container_start_page | 114501 |
container_title | Physical review letters |
container_volume | 97 |
creator | Hall, David M Lookman, Turab Fredrickson, Glenn H Banerjee, Sanjoy |
description | We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number. |
doi_str_mv | 10.1103/PhysRevLett.97.114501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68940303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68940303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMobk5_gtIn3zpvmiZpHmU4Nxgoos-hTW5dpW1mkgn991Y30KfLuZxz7-Ej5JrCnFJgd8_bIbzg1wZjnCs57nIO9IRMKUiVylGekikAo6kCkBNyEcIHANBMFOdkQiVkvFB0StarwXpnh77sGpMEbOvUuD40IWIfk7rB1iZxi84PSe180vRb17l37NHtQ7Jz7dChTzpsY7gkZ3XZBrw6zhl5Wz68Llbp5ulxvbjfpIaBjGllMmlrU1cUK8sENWNXZQQ3mPMqE1XBjClUWVor0RaS56BEBpyJvBilEmxGbg93d9597jFE3TXBYNuWv6W0KFQODNho5Aej8S4Ej7Xe-aYr_aAp6B-G-h9DraQ-MBxzN8cH-6pD-5c6QmPfXhxx3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68940303</pqid></control><display><type>article</type><title>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</title><source>American Physical Society Journals</source><creator>Hall, David M ; Lookman, Turab ; Fredrickson, Glenn H ; Banerjee, Sanjoy</creator><creatorcontrib>Hall, David M ; Lookman, Turab ; Fredrickson, Glenn H ; Banerjee, Sanjoy</creatorcontrib><description>We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.97.114501</identifier><identifier>PMID: 17025891</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2006-09, Vol.97 (11), p.114501-114501, Article 114501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</citedby><cites>FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17025891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, David M</creatorcontrib><creatorcontrib>Lookman, Turab</creatorcontrib><creatorcontrib>Fredrickson, Glenn H</creatorcontrib><creatorcontrib>Banerjee, Sanjoy</creatorcontrib><title>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMobk5_gtIn3zpvmiZpHmU4Nxgoos-hTW5dpW1mkgn991Y30KfLuZxz7-Ej5JrCnFJgd8_bIbzg1wZjnCs57nIO9IRMKUiVylGekikAo6kCkBNyEcIHANBMFOdkQiVkvFB0StarwXpnh77sGpMEbOvUuD40IWIfk7rB1iZxi84PSe180vRb17l37NHtQ7Jz7dChTzpsY7gkZ3XZBrw6zhl5Wz68Llbp5ulxvbjfpIaBjGllMmlrU1cUK8sENWNXZQQ3mPMqE1XBjClUWVor0RaS56BEBpyJvBilEmxGbg93d9597jFE3TXBYNuWv6W0KFQODNho5Aej8S4Ej7Xe-aYr_aAp6B-G-h9DraQ-MBxzN8cH-6pD-5c6QmPfXhxx3Q</recordid><startdate>20060915</startdate><enddate>20060915</enddate><creator>Hall, David M</creator><creator>Lookman, Turab</creator><creator>Fredrickson, Glenn H</creator><creator>Banerjee, Sanjoy</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060915</creationdate><title>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</title><author>Hall, David M ; Lookman, Turab ; Fredrickson, Glenn H ; Banerjee, Sanjoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, David M</creatorcontrib><creatorcontrib>Lookman, Turab</creatorcontrib><creatorcontrib>Fredrickson, Glenn H</creatorcontrib><creatorcontrib>Banerjee, Sanjoy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, David M</au><au>Lookman, Turab</au><au>Fredrickson, Glenn H</au><au>Banerjee, Sanjoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-09-15</date><risdate>2006</risdate><volume>97</volume><issue>11</issue><spage>114501</spage><epage>114501</epage><pages>114501-114501</pages><artnum>114501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.</abstract><cop>United States</cop><pmid>17025891</pmid><doi>10.1103/PhysRevLett.97.114501</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2006-09, Vol.97 (11), p.114501-114501, Article 114501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_68940303 |
source | American Physical Society Journals |
title | Hydrodynamic self-consistent field theory for inhomogeneous polymer melts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20self-consistent%20field%20theory%20for%20inhomogeneous%20polymer%20melts&rft.jtitle=Physical%20review%20letters&rft.au=Hall,%20David%20M&rft.date=2006-09-15&rft.volume=97&rft.issue=11&rft.spage=114501&rft.epage=114501&rft.pages=114501-114501&rft.artnum=114501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.97.114501&rft_dat=%3Cproquest_cross%3E68940303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68940303&rft_id=info:pmid/17025891&rfr_iscdi=true |