Hydrodynamic self-consistent field theory for inhomogeneous polymer melts

We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2006-09, Vol.97 (11), p.114501-114501, Article 114501
Hauptverfasser: Hall, David M, Lookman, Turab, Fredrickson, Glenn H, Banerjee, Sanjoy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114501
container_issue 11
container_start_page 114501
container_title Physical review letters
container_volume 97
creator Hall, David M
Lookman, Turab
Fredrickson, Glenn H
Banerjee, Sanjoy
description We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.
doi_str_mv 10.1103/PhysRevLett.97.114501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68940303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68940303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMobk5_gtIn3zpvmiZpHmU4Nxgoos-hTW5dpW1mkgn991Y30KfLuZxz7-Ej5JrCnFJgd8_bIbzg1wZjnCs57nIO9IRMKUiVylGekikAo6kCkBNyEcIHANBMFOdkQiVkvFB0StarwXpnh77sGpMEbOvUuD40IWIfk7rB1iZxi84PSe180vRb17l37NHtQ7Jz7dChTzpsY7gkZ3XZBrw6zhl5Wz68Llbp5ulxvbjfpIaBjGllMmlrU1cUK8sENWNXZQQ3mPMqE1XBjClUWVor0RaS56BEBpyJvBilEmxGbg93d9597jFE3TXBYNuWv6W0KFQODNho5Aej8S4Ej7Xe-aYr_aAp6B-G-h9DraQ-MBxzN8cH-6pD-5c6QmPfXhxx3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68940303</pqid></control><display><type>article</type><title>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</title><source>American Physical Society Journals</source><creator>Hall, David M ; Lookman, Turab ; Fredrickson, Glenn H ; Banerjee, Sanjoy</creator><creatorcontrib>Hall, David M ; Lookman, Turab ; Fredrickson, Glenn H ; Banerjee, Sanjoy</creatorcontrib><description>We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.97.114501</identifier><identifier>PMID: 17025891</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2006-09, Vol.97 (11), p.114501-114501, Article 114501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</citedby><cites>FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17025891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, David M</creatorcontrib><creatorcontrib>Lookman, Turab</creatorcontrib><creatorcontrib>Fredrickson, Glenn H</creatorcontrib><creatorcontrib>Banerjee, Sanjoy</creatorcontrib><title>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMobk5_gtIn3zpvmiZpHmU4Nxgoos-hTW5dpW1mkgn991Y30KfLuZxz7-Ej5JrCnFJgd8_bIbzg1wZjnCs57nIO9IRMKUiVylGekikAo6kCkBNyEcIHANBMFOdkQiVkvFB0StarwXpnh77sGpMEbOvUuD40IWIfk7rB1iZxi84PSe180vRb17l37NHtQ7Jz7dChTzpsY7gkZ3XZBrw6zhl5Wz68Llbp5ulxvbjfpIaBjGllMmlrU1cUK8sENWNXZQQ3mPMqE1XBjClUWVor0RaS56BEBpyJvBilEmxGbg93d9597jFE3TXBYNuWv6W0KFQODNho5Aej8S4Ej7Xe-aYr_aAp6B-G-h9DraQ-MBxzN8cH-6pD-5c6QmPfXhxx3Q</recordid><startdate>20060915</startdate><enddate>20060915</enddate><creator>Hall, David M</creator><creator>Lookman, Turab</creator><creator>Fredrickson, Glenn H</creator><creator>Banerjee, Sanjoy</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060915</creationdate><title>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</title><author>Hall, David M ; Lookman, Turab ; Fredrickson, Glenn H ; Banerjee, Sanjoy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-bc27dfcfb1ebd361c7119c65ce45b26b83cc89aadd7ed87540962053648d87963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, David M</creatorcontrib><creatorcontrib>Lookman, Turab</creatorcontrib><creatorcontrib>Fredrickson, Glenn H</creatorcontrib><creatorcontrib>Banerjee, Sanjoy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, David M</au><au>Lookman, Turab</au><au>Fredrickson, Glenn H</au><au>Banerjee, Sanjoy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic self-consistent field theory for inhomogeneous polymer melts</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-09-15</date><risdate>2006</risdate><volume>97</volume><issue>11</issue><spage>114501</spage><epage>114501</epage><pages>114501-114501</pages><artnum>114501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We introduce a mesoscale technique for simulating the structure and rheology of block-copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self-consistent field theory with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a submicron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.</abstract><cop>United States</cop><pmid>17025891</pmid><doi>10.1103/PhysRevLett.97.114501</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2006-09, Vol.97 (11), p.114501-114501, Article 114501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_68940303
source American Physical Society Journals
title Hydrodynamic self-consistent field theory for inhomogeneous polymer melts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20self-consistent%20field%20theory%20for%20inhomogeneous%20polymer%20melts&rft.jtitle=Physical%20review%20letters&rft.au=Hall,%20David%20M&rft.date=2006-09-15&rft.volume=97&rft.issue=11&rft.spage=114501&rft.epage=114501&rft.pages=114501-114501&rft.artnum=114501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.97.114501&rft_dat=%3Cproquest_cross%3E68940303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68940303&rft_id=info:pmid/17025891&rfr_iscdi=true