Thermal Analysis of the PediaFlow Pediatric Ventricular Assist Device

Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASAIO journal (1992) 2007-01, Vol.53 (1), p.65-73
Hauptverfasser: Gardiner, Jeffrey M, Wu, Jingchun, Noh, Myounggyu D, Antaki, James F, Snyder, Trevor A, Paden, David B, Paden, Brad E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 65
container_title ASAIO journal (1992)
container_volume 53
creator Gardiner, Jeffrey M
Wu, Jingchun
Noh, Myounggyu D
Antaki, James F
Snyder, Trevor A
Paden, David B
Paden, Brad E
description Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generationcopper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2°C during normal operation.
doi_str_mv 10.1097/01.mat.0000247156.94587.6c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68933132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68933132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4141-9be75de2bbda738e502bc7060db8f7716d78b8c00eefb4b35225e00478d681d3</originalsourceid><addsrcrecordid>eNpFkE1r3DAQQEVpadK0f6GYHnqzOyNZH-5tSZO2EGgPS8hNSPKYdSuvU8nukn8fJbuQATEj5s0IPcY-ITQInf4C2ExuaaAEbzVK1XStNLpR4RU7RylM3bXi7nWpQZqad6jO2Luc_wCUpsC37Aw1F1pJPGdX2x2lycVqs3fxIY-5modq2VH1m_rRXcf5cKyWNIbqlvZPeY0uVZtc4KX6Rv_HQO_Zm8HFTB9O-YJtr6-2lz_qm1_ff15uburQYot150nLnrj3vdPCkATugwYFvTeD1qh6bbwJAESDb72QnEsCaLXplcFeXLDPx7X3af63Ul7sNOZAMbo9zWu2ynTlf4IX8OsRDGnOOdFg79M4ufRgEeyTQwtoi0P74tA-O7QqlOGPp1dWP1H_MnqSVoD2CBzmuFDKf-N6oGR35OKyO600UHMADVhudTmI4hFfT33D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68933132</pqid></control><display><type>article</type><title>Thermal Analysis of the PediaFlow Pediatric Ventricular Assist Device</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Gardiner, Jeffrey M ; Wu, Jingchun ; Noh, Myounggyu D ; Antaki, James F ; Snyder, Trevor A ; Paden, David B ; Paden, Brad E</creator><creatorcontrib>Gardiner, Jeffrey M ; Wu, Jingchun ; Noh, Myounggyu D ; Antaki, James F ; Snyder, Trevor A ; Paden, David B ; Paden, Brad E</creatorcontrib><description>Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generationcopper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2°C during normal operation.</description><identifier>ISSN: 1058-2916</identifier><identifier>EISSN: 1538-943X</identifier><identifier>DOI: 10.1097/01.mat.0000247156.94587.6c</identifier><identifier>PMID: 17237651</identifier><language>eng</language><publisher>United States: Amercian Society of Artificial Internal Organs</publisher><subject>Child ; Equipment Design ; Finite Element Analysis ; Heart-Assist Devices ; Hot Temperature ; Humans ; Models, Theoretical ; Temperature</subject><ispartof>ASAIO journal (1992), 2007-01, Vol.53 (1), p.65-73</ispartof><rights>2007Amercian Society of Artificial Internal Organs</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4141-9be75de2bbda738e502bc7060db8f7716d78b8c00eefb4b35225e00478d681d3</citedby><cites>FETCH-LOGICAL-c4141-9be75de2bbda738e502bc7060db8f7716d78b8c00eefb4b35225e00478d681d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00002480-200701000-00011$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,777,781,4595,27905,27906,65212</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17237651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardiner, Jeffrey M</creatorcontrib><creatorcontrib>Wu, Jingchun</creatorcontrib><creatorcontrib>Noh, Myounggyu D</creatorcontrib><creatorcontrib>Antaki, James F</creatorcontrib><creatorcontrib>Snyder, Trevor A</creatorcontrib><creatorcontrib>Paden, David B</creatorcontrib><creatorcontrib>Paden, Brad E</creatorcontrib><title>Thermal Analysis of the PediaFlow Pediatric Ventricular Assist Device</title><title>ASAIO journal (1992)</title><addtitle>ASAIO J</addtitle><description>Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generationcopper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2°C during normal operation.</description><subject>Child</subject><subject>Equipment Design</subject><subject>Finite Element Analysis</subject><subject>Heart-Assist Devices</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Models, Theoretical</subject><subject>Temperature</subject><issn>1058-2916</issn><issn>1538-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1r3DAQQEVpadK0f6GYHnqzOyNZH-5tSZO2EGgPS8hNSPKYdSuvU8nukn8fJbuQATEj5s0IPcY-ITQInf4C2ExuaaAEbzVK1XStNLpR4RU7RylM3bXi7nWpQZqad6jO2Luc_wCUpsC37Aw1F1pJPGdX2x2lycVqs3fxIY-5modq2VH1m_rRXcf5cKyWNIbqlvZPeY0uVZtc4KX6Rv_HQO_Zm8HFTB9O-YJtr6-2lz_qm1_ff15uburQYot150nLnrj3vdPCkATugwYFvTeD1qh6bbwJAESDb72QnEsCaLXplcFeXLDPx7X3af63Ul7sNOZAMbo9zWu2ynTlf4IX8OsRDGnOOdFg79M4ufRgEeyTQwtoi0P74tA-O7QqlOGPp1dWP1H_MnqSVoD2CBzmuFDKf-N6oGR35OKyO600UHMADVhudTmI4hFfT33D</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Gardiner, Jeffrey M</creator><creator>Wu, Jingchun</creator><creator>Noh, Myounggyu D</creator><creator>Antaki, James F</creator><creator>Snyder, Trevor A</creator><creator>Paden, David B</creator><creator>Paden, Brad E</creator><general>Amercian Society of Artificial Internal Organs</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200701</creationdate><title>Thermal Analysis of the PediaFlow Pediatric Ventricular Assist Device</title><author>Gardiner, Jeffrey M ; Wu, Jingchun ; Noh, Myounggyu D ; Antaki, James F ; Snyder, Trevor A ; Paden, David B ; Paden, Brad E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4141-9be75de2bbda738e502bc7060db8f7716d78b8c00eefb4b35225e00478d681d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Child</topic><topic>Equipment Design</topic><topic>Finite Element Analysis</topic><topic>Heart-Assist Devices</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Models, Theoretical</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardiner, Jeffrey M</creatorcontrib><creatorcontrib>Wu, Jingchun</creatorcontrib><creatorcontrib>Noh, Myounggyu D</creatorcontrib><creatorcontrib>Antaki, James F</creatorcontrib><creatorcontrib>Snyder, Trevor A</creatorcontrib><creatorcontrib>Paden, David B</creatorcontrib><creatorcontrib>Paden, Brad E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ASAIO journal (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardiner, Jeffrey M</au><au>Wu, Jingchun</au><au>Noh, Myounggyu D</au><au>Antaki, James F</au><au>Snyder, Trevor A</au><au>Paden, David B</au><au>Paden, Brad E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Analysis of the PediaFlow Pediatric Ventricular Assist Device</atitle><jtitle>ASAIO journal (1992)</jtitle><addtitle>ASAIO J</addtitle><date>2007-01</date><risdate>2007</risdate><volume>53</volume><issue>1</issue><spage>65</spage><epage>73</epage><pages>65-73</pages><issn>1058-2916</issn><eissn>1538-943X</eissn><abstract>Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generationcopper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2°C during normal operation.</abstract><cop>United States</cop><pub>Amercian Society of Artificial Internal Organs</pub><pmid>17237651</pmid><doi>10.1097/01.mat.0000247156.94587.6c</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-2916
ispartof ASAIO journal (1992), 2007-01, Vol.53 (1), p.65-73
issn 1058-2916
1538-943X
language eng
recordid cdi_proquest_miscellaneous_68933132
source MEDLINE; Journals@Ovid LWW Legacy Archive; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Child
Equipment Design
Finite Element Analysis
Heart-Assist Devices
Hot Temperature
Humans
Models, Theoretical
Temperature
title Thermal Analysis of the PediaFlow Pediatric Ventricular Assist Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Analysis%20of%20the%20PediaFlow%20Pediatric%20Ventricular%20Assist%20Device&rft.jtitle=ASAIO%20journal%20(1992)&rft.au=Gardiner,%20Jeffrey%20M&rft.date=2007-01&rft.volume=53&rft.issue=1&rft.spage=65&rft.epage=73&rft.pages=65-73&rft.issn=1058-2916&rft.eissn=1538-943X&rft_id=info:doi/10.1097/01.mat.0000247156.94587.6c&rft_dat=%3Cproquest_cross%3E68933132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68933132&rft_id=info:pmid/17237651&rfr_iscdi=true