Natural expansion of the genetic code

At the time of its discovery four decades ago, the genetic code was viewed as the result of a “frozen accident.” Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2007-01, Vol.3 (1), p.29-35
Hauptverfasser: Ambrogelly, Alexandre, Palioura, Sotiria, Söll, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 29
container_title Nature chemical biology
container_volume 3
creator Ambrogelly, Alexandre
Palioura, Sotiria
Söll, Dieter
description At the time of its discovery four decades ago, the genetic code was viewed as the result of a “frozen accident.” Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNA Cys and tRNA Sec ) may presage the discovery of other cotranslationally inserted modified amino acids.
doi_str_mv 10.1038/nchembio847
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68918777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68918777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e981f44c35db665a71abe66deb962866894eed98937e06dbb20a9f7722b4173c3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMo7rp68i5F0ItWkzTNx3FZ_IJFL3ouSTvd7dIma9KC_nsju7ginmaGeXhmeBE6JfiG4Eze2nIJnWmcZGIPjUme05QxrvZ_-hyP0FEIK4wzzok8RCMiiMgwFWN08az7wes2gY-1tqFxNnF10i8hWYCFvimT0lVwjA5q3QY42dYJeru_e509pvOXh6fZdJ6WWU76FJQkNWNxqAznuRZEG-C8AqM4lZxLxQAqJVUmAPPKGIq1qoWg1LD4UJlN0OXGu_bufYDQF10TSmhbbcENoYgGIoUQETz_A67c4G38raCUCkpyyiJ0tYFK70LwUBdr33TafxYEF9_RFb-ii_TZVjmYDqodu80qAtcbIMSVXYDf3fzP9wUZxnhd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222721524</pqid></control><display><type>article</type><title>Natural expansion of the genetic code</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ambrogelly, Alexandre ; Palioura, Sotiria ; Söll, Dieter</creator><creatorcontrib>Ambrogelly, Alexandre ; Palioura, Sotiria ; Söll, Dieter</creatorcontrib><description>At the time of its discovery four decades ago, the genetic code was viewed as the result of a “frozen accident.” Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNA Cys and tRNA Sec ) may presage the discovery of other cotranslationally inserted modified amino acids.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio847</identifier><identifier>PMID: 17173027</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Amino acids ; Amino Acyl-tRNA Synthetases - genetics ; Amino Acyl-tRNA Synthetases - metabolism ; Archaea - chemistry ; Archaea - genetics ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Cellular biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Eukaryotic Cells - chemistry ; Evolution, Molecular ; Genetic Code ; Genomics ; Lysine - analogs &amp; derivatives ; Lysine - chemistry ; Lysine - genetics ; Molecular Structure ; perspective ; Proteins ; Ribonucleic acid ; RNA ; RNA - chemistry ; RNA - genetics ; Selenocysteine - chemistry ; Selenocysteine - genetics</subject><ispartof>Nature chemical biology, 2007-01, Vol.3 (1), p.29-35</ispartof><rights>Springer Nature America, Inc. 2007</rights><rights>Copyright Nature Publishing Group Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e981f44c35db665a71abe66deb962866894eed98937e06dbb20a9f7722b4173c3</citedby><cites>FETCH-LOGICAL-c351t-e981f44c35db665a71abe66deb962866894eed98937e06dbb20a9f7722b4173c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio847$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio847$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17173027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrogelly, Alexandre</creatorcontrib><creatorcontrib>Palioura, Sotiria</creatorcontrib><creatorcontrib>Söll, Dieter</creatorcontrib><title>Natural expansion of the genetic code</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>At the time of its discovery four decades ago, the genetic code was viewed as the result of a “frozen accident.” Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNA Cys and tRNA Sec ) may presage the discovery of other cotranslationally inserted modified amino acids.</description><subject>Amino acids</subject><subject>Amino Acyl-tRNA Synthetases - genetics</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Archaea - chemistry</subject><subject>Archaea - genetics</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Eukaryotic Cells - chemistry</subject><subject>Evolution, Molecular</subject><subject>Genetic Code</subject><subject>Genomics</subject><subject>Lysine - analogs &amp; derivatives</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Molecular Structure</subject><subject>perspective</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>Selenocysteine - chemistry</subject><subject>Selenocysteine - genetics</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkE1LxDAQhoMo7rp68i5F0ItWkzTNx3FZ_IJFL3ouSTvd7dIma9KC_nsju7ginmaGeXhmeBE6JfiG4Eze2nIJnWmcZGIPjUme05QxrvZ_-hyP0FEIK4wzzok8RCMiiMgwFWN08az7wes2gY-1tqFxNnF10i8hWYCFvimT0lVwjA5q3QY42dYJeru_e509pvOXh6fZdJ6WWU76FJQkNWNxqAznuRZEG-C8AqM4lZxLxQAqJVUmAPPKGIq1qoWg1LD4UJlN0OXGu_bufYDQF10TSmhbbcENoYgGIoUQETz_A67c4G38raCUCkpyyiJ0tYFK70LwUBdr33TafxYEF9_RFb-ii_TZVjmYDqodu80qAtcbIMSVXYDf3fzP9wUZxnhd</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Ambrogelly, Alexandre</creator><creator>Palioura, Sotiria</creator><creator>Söll, Dieter</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070101</creationdate><title>Natural expansion of the genetic code</title><author>Ambrogelly, Alexandre ; Palioura, Sotiria ; Söll, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e981f44c35db665a71abe66deb962866894eed98937e06dbb20a9f7722b4173c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino acids</topic><topic>Amino Acyl-tRNA Synthetases - genetics</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Archaea - chemistry</topic><topic>Archaea - genetics</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Eukaryotic Cells - chemistry</topic><topic>Evolution, Molecular</topic><topic>Genetic Code</topic><topic>Genomics</topic><topic>Lysine - analogs &amp; derivatives</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Molecular Structure</topic><topic>perspective</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>Selenocysteine - chemistry</topic><topic>Selenocysteine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrogelly, Alexandre</creatorcontrib><creatorcontrib>Palioura, Sotiria</creatorcontrib><creatorcontrib>Söll, Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrogelly, Alexandre</au><au>Palioura, Sotiria</au><au>Söll, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural expansion of the genetic code</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>3</volume><issue>1</issue><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>At the time of its discovery four decades ago, the genetic code was viewed as the result of a “frozen accident.” Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNA Cys and tRNA Sec ) may presage the discovery of other cotranslationally inserted modified amino acids.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>17173027</pmid><doi>10.1038/nchembio847</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2007-01, Vol.3 (1), p.29-35
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_68918777
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Amino acids
Amino Acyl-tRNA Synthetases - genetics
Amino Acyl-tRNA Synthetases - metabolism
Archaea - chemistry
Archaea - genetics
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Cellular biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Eukaryotic Cells - chemistry
Evolution, Molecular
Genetic Code
Genomics
Lysine - analogs & derivatives
Lysine - chemistry
Lysine - genetics
Molecular Structure
perspective
Proteins
Ribonucleic acid
RNA
RNA - chemistry
RNA - genetics
Selenocysteine - chemistry
Selenocysteine - genetics
title Natural expansion of the genetic code
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20expansion%20of%20the%20genetic%20code&rft.jtitle=Nature%20chemical%20biology&rft.au=Ambrogelly,%20Alexandre&rft.date=2007-01-01&rft.volume=3&rft.issue=1&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio847&rft_dat=%3Cproquest_cross%3E68918777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222721524&rft_id=info:pmid/17173027&rfr_iscdi=true