Studies on depth‐of‐field effects in microscopy supported by numerical simulations
Summary Micrographs are two‐dimensional (2D) representations of three‐dimensional (3D) objects. When the depth‐of‐field of a micrograph is comparable with or larger than the characteristic dimension of objects within the micrograph, measured 2D parameters (e.g. particle number density, surface area...
Gespeichert in:
Veröffentlicht in: | Journal of microscopy (Oxford) 2005-12, Vol.220 (3), p.176-189 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 3 |
container_start_page | 176 |
container_title | Journal of microscopy (Oxford) |
container_volume | 220 |
creator | OVERBY, DARRYL R. JOHNSON, MARK |
description | Summary
Micrographs are two‐dimensional (2D) representations of three‐dimensional (3D) objects. When the depth‐of‐field of a micrograph is comparable with or larger than the characteristic dimension of objects within the micrograph, measured 2D parameters (e.g. particle number density, surface area of particles, fraction of open space) require stereological correction to determine the correct 3D values. Here, we develop a stereological theory using a differential approach to relate the 3D volume fraction and specific surface area to the 2D projected area and perimeter fractions, accounting for the influence of depth‐of‐field. The stereological theory is appropriate for random isotropic arrangements of non‐interpenetrating particles and is valid for convex geometries (e.g. spheres, spheroids, cylinders). These geometrical assumptions allow the stereological formulae to be expressed as a set of algebraic equations incorporating a single parameter to describe particle shape that is tightly bounded between 1.5π and 2π. The stereological theory may also be applied to arrangements of interpenetrating convex particles, and for this case, the resulting stereological formulae become identical to the formulae previously presented by Miles. To test the accuracy of the stereological theory, random computational arrangements of non‐interpenetrating and interpenetrating spheres or cylinders are analysed, and the projected area and perimeter fractions are numerically determined as a function of depth‐of‐field. The computational results show very good agreement with the theoretical predictions over a broad range of depth‐of‐field, volume fraction and particle geometry for both non‐interpenetrating and interpenetrating particles, demonstrating the overall accuracy of the stereological theory. Applications of the stereological theory towards analysis of biological tissues and extracellular matrix are discussed. |
doi_str_mv | 10.1111/j.1365-2818.2005.01520.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68912896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68912896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-57dcdcae8f1dadf5329f9b1a68ad023b16d3a3427a133b76a0e0997a886bc82f3</originalsourceid><addsrcrecordid>eNqNkMlOxDAMhiMEgmF5BZQTtxYnoWl64IAQy6BBHFiuUZpFZNSNphXTG4_AM_IktMwIrvhgW_Lv3_KHECYQkzFOlzFhPImoICKmAEkMJKEQr7bQ7HewjWYAlEY0pbCH9kNYAoBIBOyiPcIZPwMgM_Ty2PXG24DrChvbdK9fH5-1G5PztjDYOmd1F7CvcOl1WwddNwMOfdPUbWcNzgdc9aVtvVYFDr7sC9X5ugqHaMepItijTT1Az9dXT5e30eLhZn55sYg04ylESWq00coKR4wyLmE0c1lOFBfKAGU54YYpdkZTRRjLU67AQpalSgiea0EdO0Ana9-mrd96GzpZ-qBtUajK1n2QXGSEioyPQrEWTk-E1jrZtL5U7SAJyImpXMoJnZzQyYmp_GEqV-Pq8eZGn5fW_C1uII6C87Xg3Rd2-LexvLufTx37Bj1siH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68912896</pqid></control><display><type>article</type><title>Studies on depth‐of‐field effects in microscopy supported by numerical simulations</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>OVERBY, DARRYL R. ; JOHNSON, MARK</creator><creatorcontrib>OVERBY, DARRYL R. ; JOHNSON, MARK</creatorcontrib><description>Summary
Micrographs are two‐dimensional (2D) representations of three‐dimensional (3D) objects. When the depth‐of‐field of a micrograph is comparable with or larger than the characteristic dimension of objects within the micrograph, measured 2D parameters (e.g. particle number density, surface area of particles, fraction of open space) require stereological correction to determine the correct 3D values. Here, we develop a stereological theory using a differential approach to relate the 3D volume fraction and specific surface area to the 2D projected area and perimeter fractions, accounting for the influence of depth‐of‐field. The stereological theory is appropriate for random isotropic arrangements of non‐interpenetrating particles and is valid for convex geometries (e.g. spheres, spheroids, cylinders). These geometrical assumptions allow the stereological formulae to be expressed as a set of algebraic equations incorporating a single parameter to describe particle shape that is tightly bounded between 1.5π and 2π. The stereological theory may also be applied to arrangements of interpenetrating convex particles, and for this case, the resulting stereological formulae become identical to the formulae previously presented by Miles. To test the accuracy of the stereological theory, random computational arrangements of non‐interpenetrating and interpenetrating spheres or cylinders are analysed, and the projected area and perimeter fractions are numerically determined as a function of depth‐of‐field. The computational results show very good agreement with the theoretical predictions over a broad range of depth‐of‐field, volume fraction and particle geometry for both non‐interpenetrating and interpenetrating particles, demonstrating the overall accuracy of the stereological theory. Applications of the stereological theory towards analysis of biological tissues and extracellular matrix are discussed.</description><identifier>ISSN: 0022-2720</identifier><identifier>EISSN: 1365-2818</identifier><identifier>DOI: 10.1111/j.1365-2818.2005.01520.x</identifier><identifier>PMID: 16364001</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Convex microscopy ; depth‐of‐field ; extracellular matrix ; Extracellular Matrix - ultrastructure ; Microscopy - methods ; Models, Theoretical ; non‐interpenetrating ; projection ; simulation ; specific surface area ; stereology ; volume fraction</subject><ispartof>Journal of microscopy (Oxford), 2005-12, Vol.220 (3), p.176-189</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-57dcdcae8f1dadf5329f9b1a68ad023b16d3a3427a133b76a0e0997a886bc82f3</citedby><cites>FETCH-LOGICAL-c3670-57dcdcae8f1dadf5329f9b1a68ad023b16d3a3427a133b76a0e0997a886bc82f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2818.2005.01520.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2818.2005.01520.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16364001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>OVERBY, DARRYL R.</creatorcontrib><creatorcontrib>JOHNSON, MARK</creatorcontrib><title>Studies on depth‐of‐field effects in microscopy supported by numerical simulations</title><title>Journal of microscopy (Oxford)</title><addtitle>J Microsc</addtitle><description>Summary
Micrographs are two‐dimensional (2D) representations of three‐dimensional (3D) objects. When the depth‐of‐field of a micrograph is comparable with or larger than the characteristic dimension of objects within the micrograph, measured 2D parameters (e.g. particle number density, surface area of particles, fraction of open space) require stereological correction to determine the correct 3D values. Here, we develop a stereological theory using a differential approach to relate the 3D volume fraction and specific surface area to the 2D projected area and perimeter fractions, accounting for the influence of depth‐of‐field. The stereological theory is appropriate for random isotropic arrangements of non‐interpenetrating particles and is valid for convex geometries (e.g. spheres, spheroids, cylinders). These geometrical assumptions allow the stereological formulae to be expressed as a set of algebraic equations incorporating a single parameter to describe particle shape that is tightly bounded between 1.5π and 2π. The stereological theory may also be applied to arrangements of interpenetrating convex particles, and for this case, the resulting stereological formulae become identical to the formulae previously presented by Miles. To test the accuracy of the stereological theory, random computational arrangements of non‐interpenetrating and interpenetrating spheres or cylinders are analysed, and the projected area and perimeter fractions are numerically determined as a function of depth‐of‐field. The computational results show very good agreement with the theoretical predictions over a broad range of depth‐of‐field, volume fraction and particle geometry for both non‐interpenetrating and interpenetrating particles, demonstrating the overall accuracy of the stereological theory. Applications of the stereological theory towards analysis of biological tissues and extracellular matrix are discussed.</description><subject>Convex microscopy</subject><subject>depth‐of‐field</subject><subject>extracellular matrix</subject><subject>Extracellular Matrix - ultrastructure</subject><subject>Microscopy - methods</subject><subject>Models, Theoretical</subject><subject>non‐interpenetrating</subject><subject>projection</subject><subject>simulation</subject><subject>specific surface area</subject><subject>stereology</subject><subject>volume fraction</subject><issn>0022-2720</issn><issn>1365-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMlOxDAMhiMEgmF5BZQTtxYnoWl64IAQy6BBHFiuUZpFZNSNphXTG4_AM_IktMwIrvhgW_Lv3_KHECYQkzFOlzFhPImoICKmAEkMJKEQr7bQ7HewjWYAlEY0pbCH9kNYAoBIBOyiPcIZPwMgM_Ty2PXG24DrChvbdK9fH5-1G5PztjDYOmd1F7CvcOl1WwddNwMOfdPUbWcNzgdc9aVtvVYFDr7sC9X5ugqHaMepItijTT1Az9dXT5e30eLhZn55sYg04ylESWq00coKR4wyLmE0c1lOFBfKAGU54YYpdkZTRRjLU67AQpalSgiea0EdO0Ana9-mrd96GzpZ-qBtUajK1n2QXGSEioyPQrEWTk-E1jrZtL5U7SAJyImpXMoJnZzQyYmp_GEqV-Pq8eZGn5fW_C1uII6C87Xg3Rd2-LexvLufTx37Bj1siH8</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>OVERBY, DARRYL R.</creator><creator>JOHNSON, MARK</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Studies on depth‐of‐field effects in microscopy supported by numerical simulations</title><author>OVERBY, DARRYL R. ; JOHNSON, MARK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-57dcdcae8f1dadf5329f9b1a68ad023b16d3a3427a133b76a0e0997a886bc82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Convex microscopy</topic><topic>depth‐of‐field</topic><topic>extracellular matrix</topic><topic>Extracellular Matrix - ultrastructure</topic><topic>Microscopy - methods</topic><topic>Models, Theoretical</topic><topic>non‐interpenetrating</topic><topic>projection</topic><topic>simulation</topic><topic>specific surface area</topic><topic>stereology</topic><topic>volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OVERBY, DARRYL R.</creatorcontrib><creatorcontrib>JOHNSON, MARK</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of microscopy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OVERBY, DARRYL R.</au><au>JOHNSON, MARK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on depth‐of‐field effects in microscopy supported by numerical simulations</atitle><jtitle>Journal of microscopy (Oxford)</jtitle><addtitle>J Microsc</addtitle><date>2005-12</date><risdate>2005</risdate><volume>220</volume><issue>3</issue><spage>176</spage><epage>189</epage><pages>176-189</pages><issn>0022-2720</issn><eissn>1365-2818</eissn><abstract>Summary
Micrographs are two‐dimensional (2D) representations of three‐dimensional (3D) objects. When the depth‐of‐field of a micrograph is comparable with or larger than the characteristic dimension of objects within the micrograph, measured 2D parameters (e.g. particle number density, surface area of particles, fraction of open space) require stereological correction to determine the correct 3D values. Here, we develop a stereological theory using a differential approach to relate the 3D volume fraction and specific surface area to the 2D projected area and perimeter fractions, accounting for the influence of depth‐of‐field. The stereological theory is appropriate for random isotropic arrangements of non‐interpenetrating particles and is valid for convex geometries (e.g. spheres, spheroids, cylinders). These geometrical assumptions allow the stereological formulae to be expressed as a set of algebraic equations incorporating a single parameter to describe particle shape that is tightly bounded between 1.5π and 2π. The stereological theory may also be applied to arrangements of interpenetrating convex particles, and for this case, the resulting stereological formulae become identical to the formulae previously presented by Miles. To test the accuracy of the stereological theory, random computational arrangements of non‐interpenetrating and interpenetrating spheres or cylinders are analysed, and the projected area and perimeter fractions are numerically determined as a function of depth‐of‐field. The computational results show very good agreement with the theoretical predictions over a broad range of depth‐of‐field, volume fraction and particle geometry for both non‐interpenetrating and interpenetrating particles, demonstrating the overall accuracy of the stereological theory. Applications of the stereological theory towards analysis of biological tissues and extracellular matrix are discussed.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16364001</pmid><doi>10.1111/j.1365-2818.2005.01520.x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2720 |
ispartof | Journal of microscopy (Oxford), 2005-12, Vol.220 (3), p.176-189 |
issn | 0022-2720 1365-2818 |
language | eng |
recordid | cdi_proquest_miscellaneous_68912896 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Convex microscopy depth‐of‐field extracellular matrix Extracellular Matrix - ultrastructure Microscopy - methods Models, Theoretical non‐interpenetrating projection simulation specific surface area stereology volume fraction |
title | Studies on depth‐of‐field effects in microscopy supported by numerical simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20depth%E2%80%90of%E2%80%90field%20effects%20in%20microscopy%20supported%20by%20numerical%20simulations&rft.jtitle=Journal%20of%20microscopy%20(Oxford)&rft.au=OVERBY,%20DARRYL%20R.&rft.date=2005-12&rft.volume=220&rft.issue=3&rft.spage=176&rft.epage=189&rft.pages=176-189&rft.issn=0022-2720&rft.eissn=1365-2818&rft_id=info:doi/10.1111/j.1365-2818.2005.01520.x&rft_dat=%3Cproquest_cross%3E68912896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68912896&rft_id=info:pmid/16364001&rfr_iscdi=true |