Intra- and interfractional patient motion for a variety of immobilization devices

The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right ( x ) , sup–inf ( y ) , and ant–post ( z ) —and the combined spatial displacement. We have defined “rigid” and “nonrig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2005-11, Vol.32 (11), p.3468-3474
Hauptverfasser: Engelsman, Martijn, Rosenthal, Stanley J., Michaud, Susan L., Adams, Judith A., Schneider, Robert J., Bradley, Stephen G., Flanz, Jacob B., Kooy, Hanne M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3474
container_issue 11
container_start_page 3468
container_title Medical physics (Lancaster)
container_volume 32
creator Engelsman, Martijn
Rosenthal, Stanley J.
Michaud, Susan L.
Adams, Judith A.
Schneider, Robert J.
Bradley, Stephen G.
Flanz, Jacob B.
Kooy, Hanne M.
description The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right ( x ) , sup–inf ( y ) , and ant–post ( z ) —and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion ( v 95 ) of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a v 95 of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while v 95 was at least 6.0 mm.
doi_str_mv 10.1118/1.2089507
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_68910667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68910667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYMo7uzqg19AAoKwQtebNEnbh32QxT8LKyroc7iT3mKkbcYkMzJ-ejvTooKMT4Hkd07uPYexJwKuhBD1S3EloW40VPfYSqqqLJSE5j5bATSqkAr0GTtP6RsAmFLDQ3YmTFlJJaoV-3Q75ogFx7HlfswUu4gu-zBizzeYPY2ZD-FwwbsQOfIdRk95z0PH_TCEte_9Tzy-t7TzjtIj9qDDPtHj5bxgX968_nzzrrj78Pb25tVd4aYJq8LpWkNHgjRolGiMFtqQ00orgcIZVXXUQilbVyMQEDaqRABXO1gb7Ux5wZ7NviFlb5PzmdxXF8aRXLYSKmkaISbq-UxtYvi-pZTt4JOjvseRwjZZUzcCjKkm8HIGXQwpRersJvoB494KsIeUrbBLyhP7dDHdrgdq_5BLrBNQzMAP39P-tJN9_3ExvJ75wxrHNE9rjoXZqS_7u69J_-KUfhfiX_9t2u5_8L-r_gKHRbU4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68910667</pqid></control><display><type>article</type><title>Intra- and interfractional patient motion for a variety of immobilization devices</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Engelsman, Martijn ; Rosenthal, Stanley J. ; Michaud, Susan L. ; Adams, Judith A. ; Schneider, Robert J. ; Bradley, Stephen G. ; Flanz, Jacob B. ; Kooy, Hanne M.</creator><creatorcontrib>Engelsman, Martijn ; Rosenthal, Stanley J. ; Michaud, Susan L. ; Adams, Judith A. ; Schneider, Robert J. ; Bradley, Stephen G. ; Flanz, Jacob B. ; Kooy, Hanne M.</creatorcontrib><description>The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right ( x ) , sup–inf ( y ) , and ant–post ( z ) —and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion ( v 95 ) of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a v 95 of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while v 95 was at least 6.0 mm.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2089507</identifier><identifier>PMID: 16372417</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; Anatomy ; BEAM POSITION ; biomedical equipment ; Cancer ; Data analysis ; Digital radiography ; Dosimetry/exposure assessment ; Equipment Design ; Humans ; Imaging, Three-Dimensional - methods ; Immobilization - methods ; Medical imaging ; Medical treatment planning ; MOTION ; motion control ; motion estimation ; Movement ; PATIENTS ; Posture ; Proton therapy ; Protons ; radiation therapy ; Radiography ; RADIOLOGY AND NUCLEAR MEDICINE ; RADIOTHERAPY ; Radiotherapy - instrumentation ; Radiotherapy - methods ; Reproducibility of Results ; Restraint, Physical ; Safety procedures ; Therapeutics ; Treatment strategy</subject><ispartof>Medical physics (Lancaster), 2005-11, Vol.32 (11), p.3468-3474</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2005 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</citedby><cites>FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2089507$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2089507$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16372417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20726911$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Engelsman, Martijn</creatorcontrib><creatorcontrib>Rosenthal, Stanley J.</creatorcontrib><creatorcontrib>Michaud, Susan L.</creatorcontrib><creatorcontrib>Adams, Judith A.</creatorcontrib><creatorcontrib>Schneider, Robert J.</creatorcontrib><creatorcontrib>Bradley, Stephen G.</creatorcontrib><creatorcontrib>Flanz, Jacob B.</creatorcontrib><creatorcontrib>Kooy, Hanne M.</creatorcontrib><title>Intra- and interfractional patient motion for a variety of immobilization devices</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right ( x ) , sup–inf ( y ) , and ant–post ( z ) —and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion ( v 95 ) of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a v 95 of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while v 95 was at least 6.0 mm.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>BEAM POSITION</subject><subject>biomedical equipment</subject><subject>Cancer</subject><subject>Data analysis</subject><subject>Digital radiography</subject><subject>Dosimetry/exposure assessment</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Immobilization - methods</subject><subject>Medical imaging</subject><subject>Medical treatment planning</subject><subject>MOTION</subject><subject>motion control</subject><subject>motion estimation</subject><subject>Movement</subject><subject>PATIENTS</subject><subject>Posture</subject><subject>Proton therapy</subject><subject>Protons</subject><subject>radiation therapy</subject><subject>Radiography</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy - instrumentation</subject><subject>Radiotherapy - methods</subject><subject>Reproducibility of Results</subject><subject>Restraint, Physical</subject><subject>Safety procedures</subject><subject>Therapeutics</subject><subject>Treatment strategy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV-L1DAUxYMo7uzqg19AAoKwQtebNEnbh32QxT8LKyroc7iT3mKkbcYkMzJ-ejvTooKMT4Hkd07uPYexJwKuhBD1S3EloW40VPfYSqqqLJSE5j5bATSqkAr0GTtP6RsAmFLDQ3YmTFlJJaoV-3Q75ogFx7HlfswUu4gu-zBizzeYPY2ZD-FwwbsQOfIdRk95z0PH_TCEte_9Tzy-t7TzjtIj9qDDPtHj5bxgX968_nzzrrj78Pb25tVd4aYJq8LpWkNHgjRolGiMFtqQ00orgcIZVXXUQilbVyMQEDaqRABXO1gb7Ux5wZ7NviFlb5PzmdxXF8aRXLYSKmkaISbq-UxtYvi-pZTt4JOjvseRwjZZUzcCjKkm8HIGXQwpRersJvoB494KsIeUrbBLyhP7dDHdrgdq_5BLrBNQzMAP39P-tJN9_3ExvJ75wxrHNE9rjoXZqS_7u69J_-KUfhfiX_9t2u5_8L-r_gKHRbU4</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Engelsman, Martijn</creator><creator>Rosenthal, Stanley J.</creator><creator>Michaud, Susan L.</creator><creator>Adams, Judith A.</creator><creator>Schneider, Robert J.</creator><creator>Bradley, Stephen G.</creator><creator>Flanz, Jacob B.</creator><creator>Kooy, Hanne M.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>200511</creationdate><title>Intra- and interfractional patient motion for a variety of immobilization devices</title><author>Engelsman, Martijn ; Rosenthal, Stanley J. ; Michaud, Susan L. ; Adams, Judith A. ; Schneider, Robert J. ; Bradley, Stephen G. ; Flanz, Jacob B. ; Kooy, Hanne M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>BEAM POSITION</topic><topic>biomedical equipment</topic><topic>Cancer</topic><topic>Data analysis</topic><topic>Digital radiography</topic><topic>Dosimetry/exposure assessment</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Immobilization - methods</topic><topic>Medical imaging</topic><topic>Medical treatment planning</topic><topic>MOTION</topic><topic>motion control</topic><topic>motion estimation</topic><topic>Movement</topic><topic>PATIENTS</topic><topic>Posture</topic><topic>Proton therapy</topic><topic>Protons</topic><topic>radiation therapy</topic><topic>Radiography</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy - instrumentation</topic><topic>Radiotherapy - methods</topic><topic>Reproducibility of Results</topic><topic>Restraint, Physical</topic><topic>Safety procedures</topic><topic>Therapeutics</topic><topic>Treatment strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelsman, Martijn</creatorcontrib><creatorcontrib>Rosenthal, Stanley J.</creatorcontrib><creatorcontrib>Michaud, Susan L.</creatorcontrib><creatorcontrib>Adams, Judith A.</creatorcontrib><creatorcontrib>Schneider, Robert J.</creatorcontrib><creatorcontrib>Bradley, Stephen G.</creatorcontrib><creatorcontrib>Flanz, Jacob B.</creatorcontrib><creatorcontrib>Kooy, Hanne M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelsman, Martijn</au><au>Rosenthal, Stanley J.</au><au>Michaud, Susan L.</au><au>Adams, Judith A.</au><au>Schneider, Robert J.</au><au>Bradley, Stephen G.</au><au>Flanz, Jacob B.</au><au>Kooy, Hanne M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intra- and interfractional patient motion for a variety of immobilization devices</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2005-11</date><risdate>2005</risdate><volume>32</volume><issue>11</issue><spage>3468</spage><epage>3474</epage><pages>3468-3474</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right ( x ) , sup–inf ( y ) , and ant–post ( z ) —and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion ( v 95 ) of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a v 95 of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while v 95 was at least 6.0 mm.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>16372417</pmid><doi>10.1118/1.2089507</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2005-11, Vol.32 (11), p.3468-3474
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_68910667
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Anatomy
BEAM POSITION
biomedical equipment
Cancer
Data analysis
Digital radiography
Dosimetry/exposure assessment
Equipment Design
Humans
Imaging, Three-Dimensional - methods
Immobilization - methods
Medical imaging
Medical treatment planning
MOTION
motion control
motion estimation
Movement
PATIENTS
Posture
Proton therapy
Protons
radiation therapy
Radiography
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Radiotherapy - instrumentation
Radiotherapy - methods
Reproducibility of Results
Restraint, Physical
Safety procedures
Therapeutics
Treatment strategy
title Intra- and interfractional patient motion for a variety of immobilization devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intra-%20and%20interfractional%20patient%20motion%20for%20a%20variety%20of%20immobilization%20devices&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Engelsman,%20Martijn&rft.date=2005-11&rft.volume=32&rft.issue=11&rft.spage=3468&rft.epage=3474&rft.pages=3468-3474&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2089507&rft_dat=%3Cproquest_wiley%3E68910667%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68910667&rft_id=info:pmid/16372417&rfr_iscdi=true