Intra- and interfractional patient motion for a variety of immobilization devices
The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right ( x ) , sup–inf ( y ) , and ant–post ( z ) —and the combined spatial displacement. We have defined “rigid” and “nonrig...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2005-11, Vol.32 (11), p.3468-3474 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3474 |
---|---|
container_issue | 11 |
container_start_page | 3468 |
container_title | Medical physics (Lancaster) |
container_volume | 32 |
creator | Engelsman, Martijn Rosenthal, Stanley J. Michaud, Susan L. Adams, Judith A. Schneider, Robert J. Bradley, Stephen G. Flanz, Jacob B. Kooy, Hanne M. |
description | The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right
(
x
)
, sup–inf
(
y
)
, and ant–post
(
z
)
—and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion
(
v
95
)
of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a
v
95
of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while
v
95
was at least 6.0 mm. |
doi_str_mv | 10.1118/1.2089507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_68910667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68910667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYMo7uzqg19AAoKwQtebNEnbh32QxT8LKyroc7iT3mKkbcYkMzJ-ejvTooKMT4Hkd07uPYexJwKuhBD1S3EloW40VPfYSqqqLJSE5j5bATSqkAr0GTtP6RsAmFLDQ3YmTFlJJaoV-3Q75ogFx7HlfswUu4gu-zBizzeYPY2ZD-FwwbsQOfIdRk95z0PH_TCEte_9Tzy-t7TzjtIj9qDDPtHj5bxgX968_nzzrrj78Pb25tVd4aYJq8LpWkNHgjRolGiMFtqQ00orgcIZVXXUQilbVyMQEDaqRABXO1gb7Ux5wZ7NviFlb5PzmdxXF8aRXLYSKmkaISbq-UxtYvi-pZTt4JOjvseRwjZZUzcCjKkm8HIGXQwpRersJvoB494KsIeUrbBLyhP7dDHdrgdq_5BLrBNQzMAP39P-tJN9_3ExvJ75wxrHNE9rjoXZqS_7u69J_-KUfhfiX_9t2u5_8L-r_gKHRbU4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68910667</pqid></control><display><type>article</type><title>Intra- and interfractional patient motion for a variety of immobilization devices</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Engelsman, Martijn ; Rosenthal, Stanley J. ; Michaud, Susan L. ; Adams, Judith A. ; Schneider, Robert J. ; Bradley, Stephen G. ; Flanz, Jacob B. ; Kooy, Hanne M.</creator><creatorcontrib>Engelsman, Martijn ; Rosenthal, Stanley J. ; Michaud, Susan L. ; Adams, Judith A. ; Schneider, Robert J. ; Bradley, Stephen G. ; Flanz, Jacob B. ; Kooy, Hanne M.</creatorcontrib><description>The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right
(
x
)
, sup–inf
(
y
)
, and ant–post
(
z
)
—and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion
(
v
95
)
of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a
v
95
of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while
v
95
was at least 6.0 mm.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2089507</identifier><identifier>PMID: 16372417</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; Anatomy ; BEAM POSITION ; biomedical equipment ; Cancer ; Data analysis ; Digital radiography ; Dosimetry/exposure assessment ; Equipment Design ; Humans ; Imaging, Three-Dimensional - methods ; Immobilization - methods ; Medical imaging ; Medical treatment planning ; MOTION ; motion control ; motion estimation ; Movement ; PATIENTS ; Posture ; Proton therapy ; Protons ; radiation therapy ; Radiography ; RADIOLOGY AND NUCLEAR MEDICINE ; RADIOTHERAPY ; Radiotherapy - instrumentation ; Radiotherapy - methods ; Reproducibility of Results ; Restraint, Physical ; Safety procedures ; Therapeutics ; Treatment strategy</subject><ispartof>Medical physics (Lancaster), 2005-11, Vol.32 (11), p.3468-3474</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2005 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</citedby><cites>FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2089507$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2089507$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16372417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20726911$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Engelsman, Martijn</creatorcontrib><creatorcontrib>Rosenthal, Stanley J.</creatorcontrib><creatorcontrib>Michaud, Susan L.</creatorcontrib><creatorcontrib>Adams, Judith A.</creatorcontrib><creatorcontrib>Schneider, Robert J.</creatorcontrib><creatorcontrib>Bradley, Stephen G.</creatorcontrib><creatorcontrib>Flanz, Jacob B.</creatorcontrib><creatorcontrib>Kooy, Hanne M.</creatorcontrib><title>Intra- and interfractional patient motion for a variety of immobilization devices</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right
(
x
)
, sup–inf
(
y
)
, and ant–post
(
z
)
—and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion
(
v
95
)
of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a
v
95
of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while
v
95
was at least 6.0 mm.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>BEAM POSITION</subject><subject>biomedical equipment</subject><subject>Cancer</subject><subject>Data analysis</subject><subject>Digital radiography</subject><subject>Dosimetry/exposure assessment</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Immobilization - methods</subject><subject>Medical imaging</subject><subject>Medical treatment planning</subject><subject>MOTION</subject><subject>motion control</subject><subject>motion estimation</subject><subject>Movement</subject><subject>PATIENTS</subject><subject>Posture</subject><subject>Proton therapy</subject><subject>Protons</subject><subject>radiation therapy</subject><subject>Radiography</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy - instrumentation</subject><subject>Radiotherapy - methods</subject><subject>Reproducibility of Results</subject><subject>Restraint, Physical</subject><subject>Safety procedures</subject><subject>Therapeutics</subject><subject>Treatment strategy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV-L1DAUxYMo7uzqg19AAoKwQtebNEnbh32QxT8LKyroc7iT3mKkbcYkMzJ-ejvTooKMT4Hkd07uPYexJwKuhBD1S3EloW40VPfYSqqqLJSE5j5bATSqkAr0GTtP6RsAmFLDQ3YmTFlJJaoV-3Q75ogFx7HlfswUu4gu-zBizzeYPY2ZD-FwwbsQOfIdRk95z0PH_TCEte_9Tzy-t7TzjtIj9qDDPtHj5bxgX968_nzzrrj78Pb25tVd4aYJq8LpWkNHgjRolGiMFtqQ00orgcIZVXXUQilbVyMQEDaqRABXO1gb7Ux5wZ7NviFlb5PzmdxXF8aRXLYSKmkaISbq-UxtYvi-pZTt4JOjvseRwjZZUzcCjKkm8HIGXQwpRersJvoB494KsIeUrbBLyhP7dDHdrgdq_5BLrBNQzMAP39P-tJN9_3ExvJ75wxrHNE9rjoXZqS_7u69J_-KUfhfiX_9t2u5_8L-r_gKHRbU4</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Engelsman, Martijn</creator><creator>Rosenthal, Stanley J.</creator><creator>Michaud, Susan L.</creator><creator>Adams, Judith A.</creator><creator>Schneider, Robert J.</creator><creator>Bradley, Stephen G.</creator><creator>Flanz, Jacob B.</creator><creator>Kooy, Hanne M.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>200511</creationdate><title>Intra- and interfractional patient motion for a variety of immobilization devices</title><author>Engelsman, Martijn ; Rosenthal, Stanley J. ; Michaud, Susan L. ; Adams, Judith A. ; Schneider, Robert J. ; Bradley, Stephen G. ; Flanz, Jacob B. ; Kooy, Hanne M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4737-c5850fe1e505a2a665156ec54541a1c647fed032dc8a0e0ea943a00c8c0b65c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>BEAM POSITION</topic><topic>biomedical equipment</topic><topic>Cancer</topic><topic>Data analysis</topic><topic>Digital radiography</topic><topic>Dosimetry/exposure assessment</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Immobilization - methods</topic><topic>Medical imaging</topic><topic>Medical treatment planning</topic><topic>MOTION</topic><topic>motion control</topic><topic>motion estimation</topic><topic>Movement</topic><topic>PATIENTS</topic><topic>Posture</topic><topic>Proton therapy</topic><topic>Protons</topic><topic>radiation therapy</topic><topic>Radiography</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy - instrumentation</topic><topic>Radiotherapy - methods</topic><topic>Reproducibility of Results</topic><topic>Restraint, Physical</topic><topic>Safety procedures</topic><topic>Therapeutics</topic><topic>Treatment strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelsman, Martijn</creatorcontrib><creatorcontrib>Rosenthal, Stanley J.</creatorcontrib><creatorcontrib>Michaud, Susan L.</creatorcontrib><creatorcontrib>Adams, Judith A.</creatorcontrib><creatorcontrib>Schneider, Robert J.</creatorcontrib><creatorcontrib>Bradley, Stephen G.</creatorcontrib><creatorcontrib>Flanz, Jacob B.</creatorcontrib><creatorcontrib>Kooy, Hanne M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelsman, Martijn</au><au>Rosenthal, Stanley J.</au><au>Michaud, Susan L.</au><au>Adams, Judith A.</au><au>Schneider, Robert J.</au><au>Bradley, Stephen G.</au><au>Flanz, Jacob B.</au><au>Kooy, Hanne M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intra- and interfractional patient motion for a variety of immobilization devices</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2005-11</date><risdate>2005</risdate><volume>32</volume><issue>11</issue><spage>3468</spage><epage>3474</epage><pages>3468-3474</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions—left–right
(
x
)
, sup–inf
(
y
)
, and ant–post
(
z
)
—and the combined spatial displacement. We have defined “rigid” and “nonrigid” immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill–Thomas–Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion
(
v
95
)
of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a
v
95
of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while
v
95
was at least 6.0 mm.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>16372417</pmid><doi>10.1118/1.2089507</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2005-11, Vol.32 (11), p.3468-3474 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_68910667 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Anatomy BEAM POSITION biomedical equipment Cancer Data analysis Digital radiography Dosimetry/exposure assessment Equipment Design Humans Imaging, Three-Dimensional - methods Immobilization - methods Medical imaging Medical treatment planning MOTION motion control motion estimation Movement PATIENTS Posture Proton therapy Protons radiation therapy Radiography RADIOLOGY AND NUCLEAR MEDICINE RADIOTHERAPY Radiotherapy - instrumentation Radiotherapy - methods Reproducibility of Results Restraint, Physical Safety procedures Therapeutics Treatment strategy |
title | Intra- and interfractional patient motion for a variety of immobilization devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intra-%20and%20interfractional%20patient%20motion%20for%20a%20variety%20of%20immobilization%20devices&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Engelsman,%20Martijn&rft.date=2005-11&rft.volume=32&rft.issue=11&rft.spage=3468&rft.epage=3474&rft.pages=3468-3474&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2089507&rft_dat=%3Cproquest_wiley%3E68910667%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68910667&rft_id=info:pmid/16372417&rfr_iscdi=true |