Ultrafast Gas Chromatographic Separation of Organophosphor and Organosulfur Compounds Utilizing a Microcountercurrent Flame Photometric Detector

A microcountercurrent flame photometric detector (μcc-FPD) was adapted and optimized for ultrafast gas chromatographic (GC) separation and detection of organophosphor (OP) and organosulfur (OS) compounds on short chromatographic columns. Air and hydrogen are introduced to the μcc-FPD from opposite d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2006-10, Vol.78 (19), p.6765-6773
Hauptverfasser: Kendler, Shai, Reidy, Shaelah M, Lambertus, Gordon R, Sacks, Richard D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6773
container_issue 19
container_start_page 6765
container_title Analytical chemistry (Washington)
container_volume 78
creator Kendler, Shai
Reidy, Shaelah M
Lambertus, Gordon R
Sacks, Richard D
description A microcountercurrent flame photometric detector (μcc-FPD) was adapted and optimized for ultrafast gas chromatographic (GC) separation and detection of organophosphor (OP) and organosulfur (OS) compounds on short chromatographic columns. Air and hydrogen are introduced to the μcc-FPD from opposite directions, creating a hydrogen-rich flame. In this μcc-FPD, combustion takes place between the burner tips without touching them. The separation between the tips and the flame reduces heat loss from the flame to the surrounding environment, resulting in low hydrogen consumption and a compact flame. The μcc-FPD is capable of detecting very narrow (13 ms) chromatographic peaks. An ultrafast GC separation of a group of six OP and OS compounds is achieved within less than 5 s using fast temperature programming of a 0.5-m-long microbore column. Very fast separations are also demonstrated on a 1-m-long microfabricated column consisting of 150-μm-wide, 240-μm-deep channels, etched in a 1.9-cm square silicon chip, covered with a Pyrex wafer, and statically coated with dimethyl polysiloxane. With a hydrogen flow rate of 10 mL/min, the detection limit for OP is 12 pg of P/s and 3 ng of S/s for OS compounds at a signal-to-noise ratio of 2. The coupling of a microfabricated column and a miniature FPD is an important step toward the development of a miniaturized GC-FPD capable of ultrafast detection of low levels of OP and OS compounds.
doi_str_mv 10.1021/ac060851a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68906960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1169960881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-c6dd716a74be187c17a6f040618dd1e7e6ca76c4b8500fb6587bed44de9c4dc23</originalsourceid><addsrcrecordid>eNpl0VGL1DAQB_AgireePvgFJAgKPlQn3TZJH2X1bpWVW9nb5zBN0t2ebVOTFNRP4Uc2suUW9CEEJj8mM_wJec7gLYOcvUMNHGTJ8AFZsDKHjEuZPyQLAFhmuQC4IE9CuANgDBh_TC5YqomiKhfk976LHhsMkV5joKujdz1Gd_A4HltNd3ZEj7F1A3UNvfEHHNx4dCEdT3EwcylMXTN5unL96KbBBLqPbdf-aocDRfql1d7pVI_W68l7O0R61WFv6fbooutt9OmnDzZaHZ1_Sh412AX7bL4vyf7q4-1qnW1urj-t3m8yLEDGTHNjBOMoitoyKTQTyBsogDNpDLPCco2C66KWJUBT81KK2pqiMLbShdH58pK8PvUdvfs-2RBV3wZtuw4H66aguKyAVxwSfPkPvHOTH9JsKmdCirIsq4TenFBaNQRvGzX6tkf_UzFQfzNS9xkl-2JuONW9NWc5h5LAqxlg0Ng1HgfdhrOTeV6BYMllJ9eGaH_cv6P_prhYilLdbnfq82b9VWzXOyXPfVGH8xL_D_gHv7y3nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217875559</pqid></control><display><type>article</type><title>Ultrafast Gas Chromatographic Separation of Organophosphor and Organosulfur Compounds Utilizing a Microcountercurrent Flame Photometric Detector</title><source>ACS Publications</source><creator>Kendler, Shai ; Reidy, Shaelah M ; Lambertus, Gordon R ; Sacks, Richard D</creator><creatorcontrib>Kendler, Shai ; Reidy, Shaelah M ; Lambertus, Gordon R ; Sacks, Richard D</creatorcontrib><description>A microcountercurrent flame photometric detector (μcc-FPD) was adapted and optimized for ultrafast gas chromatographic (GC) separation and detection of organophosphor (OP) and organosulfur (OS) compounds on short chromatographic columns. Air and hydrogen are introduced to the μcc-FPD from opposite directions, creating a hydrogen-rich flame. In this μcc-FPD, combustion takes place between the burner tips without touching them. The separation between the tips and the flame reduces heat loss from the flame to the surrounding environment, resulting in low hydrogen consumption and a compact flame. The μcc-FPD is capable of detecting very narrow (13 ms) chromatographic peaks. An ultrafast GC separation of a group of six OP and OS compounds is achieved within less than 5 s using fast temperature programming of a 0.5-m-long microbore column. Very fast separations are also demonstrated on a 1-m-long microfabricated column consisting of 150-μm-wide, 240-μm-deep channels, etched in a 1.9-cm square silicon chip, covered with a Pyrex wafer, and statically coated with dimethyl polysiloxane. With a hydrogen flow rate of 10 mL/min, the detection limit for OP is 12 pg of P/s and 3 ng of S/s for OS compounds at a signal-to-noise ratio of 2. The coupling of a microfabricated column and a miniature FPD is an important step toward the development of a miniaturized GC-FPD capable of ultrafast detection of low levels of OP and OS compounds.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac060851a</identifier><identifier>PMID: 17007495</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Applied sciences ; Chemical compounds ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Exact sciences and technology ; Gas chromatographic methods ; Global environmental pollution ; Hydrogen ; Other chromatographic methods ; Phosphorus ; Pollution ; Sulfur</subject><ispartof>Analytical chemistry (Washington), 2006-10, Vol.78 (19), p.6765-6773</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-c6dd716a74be187c17a6f040618dd1e7e6ca76c4b8500fb6587bed44de9c4dc23</citedby><cites>FETCH-LOGICAL-a408t-c6dd716a74be187c17a6f040618dd1e7e6ca76c4b8500fb6587bed44de9c4dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac060851a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac060851a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18229071$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17007495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kendler, Shai</creatorcontrib><creatorcontrib>Reidy, Shaelah M</creatorcontrib><creatorcontrib>Lambertus, Gordon R</creatorcontrib><creatorcontrib>Sacks, Richard D</creatorcontrib><title>Ultrafast Gas Chromatographic Separation of Organophosphor and Organosulfur Compounds Utilizing a Microcountercurrent Flame Photometric Detector</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A microcountercurrent flame photometric detector (μcc-FPD) was adapted and optimized for ultrafast gas chromatographic (GC) separation and detection of organophosphor (OP) and organosulfur (OS) compounds on short chromatographic columns. Air and hydrogen are introduced to the μcc-FPD from opposite directions, creating a hydrogen-rich flame. In this μcc-FPD, combustion takes place between the burner tips without touching them. The separation between the tips and the flame reduces heat loss from the flame to the surrounding environment, resulting in low hydrogen consumption and a compact flame. The μcc-FPD is capable of detecting very narrow (13 ms) chromatographic peaks. An ultrafast GC separation of a group of six OP and OS compounds is achieved within less than 5 s using fast temperature programming of a 0.5-m-long microbore column. Very fast separations are also demonstrated on a 1-m-long microfabricated column consisting of 150-μm-wide, 240-μm-deep channels, etched in a 1.9-cm square silicon chip, covered with a Pyrex wafer, and statically coated with dimethyl polysiloxane. With a hydrogen flow rate of 10 mL/min, the detection limit for OP is 12 pg of P/s and 3 ng of S/s for OS compounds at a signal-to-noise ratio of 2. The coupling of a microfabricated column and a miniature FPD is an important step toward the development of a miniaturized GC-FPD capable of ultrafast detection of low levels of OP and OS compounds.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Exact sciences and technology</subject><subject>Gas chromatographic methods</subject><subject>Global environmental pollution</subject><subject>Hydrogen</subject><subject>Other chromatographic methods</subject><subject>Phosphorus</subject><subject>Pollution</subject><subject>Sulfur</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpl0VGL1DAQB_AgireePvgFJAgKPlQn3TZJH2X1bpWVW9nb5zBN0t2ebVOTFNRP4Uc2suUW9CEEJj8mM_wJec7gLYOcvUMNHGTJ8AFZsDKHjEuZPyQLAFhmuQC4IE9CuANgDBh_TC5YqomiKhfk976LHhsMkV5joKujdz1Gd_A4HltNd3ZEj7F1A3UNvfEHHNx4dCEdT3EwcylMXTN5unL96KbBBLqPbdf-aocDRfql1d7pVI_W68l7O0R61WFv6fbooutt9OmnDzZaHZ1_Sh412AX7bL4vyf7q4-1qnW1urj-t3m8yLEDGTHNjBOMoitoyKTQTyBsogDNpDLPCco2C66KWJUBT81KK2pqiMLbShdH58pK8PvUdvfs-2RBV3wZtuw4H66aguKyAVxwSfPkPvHOTH9JsKmdCirIsq4TenFBaNQRvGzX6tkf_UzFQfzNS9xkl-2JuONW9NWc5h5LAqxlg0Ng1HgfdhrOTeV6BYMllJ9eGaH_cv6P_prhYilLdbnfq82b9VWzXOyXPfVGH8xL_D_gHv7y3nA</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Kendler, Shai</creator><creator>Reidy, Shaelah M</creator><creator>Lambertus, Gordon R</creator><creator>Sacks, Richard D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Ultrafast Gas Chromatographic Separation of Organophosphor and Organosulfur Compounds Utilizing a Microcountercurrent Flame Photometric Detector</title><author>Kendler, Shai ; Reidy, Shaelah M ; Lambertus, Gordon R ; Sacks, Richard D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-c6dd716a74be187c17a6f040618dd1e7e6ca76c4b8500fb6587bed44de9c4dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Exact sciences and technology</topic><topic>Gas chromatographic methods</topic><topic>Global environmental pollution</topic><topic>Hydrogen</topic><topic>Other chromatographic methods</topic><topic>Phosphorus</topic><topic>Pollution</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendler, Shai</creatorcontrib><creatorcontrib>Reidy, Shaelah M</creatorcontrib><creatorcontrib>Lambertus, Gordon R</creatorcontrib><creatorcontrib>Sacks, Richard D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendler, Shai</au><au>Reidy, Shaelah M</au><au>Lambertus, Gordon R</au><au>Sacks, Richard D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Gas Chromatographic Separation of Organophosphor and Organosulfur Compounds Utilizing a Microcountercurrent Flame Photometric Detector</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>78</volume><issue>19</issue><spage>6765</spage><epage>6773</epage><pages>6765-6773</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A microcountercurrent flame photometric detector (μcc-FPD) was adapted and optimized for ultrafast gas chromatographic (GC) separation and detection of organophosphor (OP) and organosulfur (OS) compounds on short chromatographic columns. Air and hydrogen are introduced to the μcc-FPD from opposite directions, creating a hydrogen-rich flame. In this μcc-FPD, combustion takes place between the burner tips without touching them. The separation between the tips and the flame reduces heat loss from the flame to the surrounding environment, resulting in low hydrogen consumption and a compact flame. The μcc-FPD is capable of detecting very narrow (13 ms) chromatographic peaks. An ultrafast GC separation of a group of six OP and OS compounds is achieved within less than 5 s using fast temperature programming of a 0.5-m-long microbore column. Very fast separations are also demonstrated on a 1-m-long microfabricated column consisting of 150-μm-wide, 240-μm-deep channels, etched in a 1.9-cm square silicon chip, covered with a Pyrex wafer, and statically coated with dimethyl polysiloxane. With a hydrogen flow rate of 10 mL/min, the detection limit for OP is 12 pg of P/s and 3 ng of S/s for OS compounds at a signal-to-noise ratio of 2. The coupling of a microfabricated column and a miniature FPD is an important step toward the development of a miniaturized GC-FPD capable of ultrafast detection of low levels of OP and OS compounds.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17007495</pmid><doi>10.1021/ac060851a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2006-10, Vol.78 (19), p.6765-6773
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_68906960
source ACS Publications
subjects Analytical chemistry
Applied sciences
Chemical compounds
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography
Exact sciences and technology
Gas chromatographic methods
Global environmental pollution
Hydrogen
Other chromatographic methods
Phosphorus
Pollution
Sulfur
title Ultrafast Gas Chromatographic Separation of Organophosphor and Organosulfur Compounds Utilizing a Microcountercurrent Flame Photometric Detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Gas%20Chromatographic%20Separation%20of%20Organophosphor%20and%20Organosulfur%20Compounds%20Utilizing%20a%20Microcountercurrent%20Flame%20Photometric%20Detector&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kendler,%20Shai&rft.date=2006-10-01&rft.volume=78&rft.issue=19&rft.spage=6765&rft.epage=6773&rft.pages=6765-6773&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac060851a&rft_dat=%3Cproquest_cross%3E1169960881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217875559&rft_id=info:pmid/17007495&rfr_iscdi=true