Classification of adolescent psychotic disorders using linear discriminant analysis
The differential diagnosis between schizophrenia and bipolar disorder during adolescence presents a major clinical problem. Can these two diagnoses be differentiated objectively early in the courses of illness? We used linear discrimination analysis (LDA) to classify 28 adolescent subjects into one...
Gespeichert in:
Veröffentlicht in: | Schizophrenia research 2006-10, Vol.87 (1), p.297-306 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 1 |
container_start_page | 297 |
container_title | Schizophrenia research |
container_volume | 87 |
creator | Pardo, Patricia J. Georgopoulos, Apostolos P. Kenny, John T. Stuve, Traci A. Findling, Robert L. Schulz, S. Charles |
description | The differential diagnosis between schizophrenia and bipolar disorder during adolescence presents a major clinical problem. Can these two diagnoses be differentiated objectively early in the courses of illness?
We used linear discrimination analysis (LDA) to classify 28 adolescent subjects into one of three diagnostic categories (healthy,
N
=
8; schizophrenia,
N
=
10; bipolar,
N
=
10) using subsets from a pool of 45 variables as potential predictors (22 neuropsychological test scores and 23 quantitative structural brain measurements). The predictor variables were adjusted for age, gender, race, and psychotropic medication. All possible subsets composed of
k
=
2–12 variables, from the set of 45 variables available, were evaluated using the robust leaving-one-subject-out method.
The highest correct classification (96%) of the 3 diagnostic categories was yielded by 9 sets of
k
=
12 predictors, comprising both neuropsychological and brain structural measures. Although each one of these sets misclassified one case, each set correctly classified (100%) at least one group, such that a fully correct diagnosis could be reached by a tree-type decision procedure.
We conclude that LDA with 12 predictor variables can provide correct and robust classification of subjects into the three diagnostic categories above. This robust classification relies upon both neuropsychological and brain structural information. Our results demonstrate that, despite overlapping clinical symptoms, schizophrenia and bipolar disorder can be differentiated early in the course of disease. This finding has two important implications. Firstly, schizophrenia and bipolar disorder are different illnesses. If schizophrenia and bipolar are dissimilar clinical manifestations of the same disease, we would not be able to use non-clinical information to classify (‘diagnose’) schizophrenia and bipolar disorder. Secondly, if this study's findings are replicated, brain structure (MRI) and brain function (neuropsychological) used together may be useful in the diagnosis of new patients. |
doi_str_mv | 10.1016/j.schres.2006.05.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68906572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920996406002349</els_id><sourcerecordid>68906572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-dfab0a01367fe494ee55cab3b6305012281fd70dbed9a73970a37ebda094231e3</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMo7rj6BiJ90Vu3le5O0rkIMqi7sOBBPYfqpNrN0NMZUz3CvL0ZZmBvngqK76_6-YR4K6GRIPXHXcP-MRM3LYBuQDUA5pnYSGW6ulVgn4sN2BZqa3V_I14x7wBAKjAvxY3UxhrbdhvxYzsjc5yixzWmpUpThSHNxJ6WtTrwyT-mNfoqRE45UObqyHH5Xc1xIczntc9xHxcsNC44nzjya_FiwpnpzXXeil9fv_zc3tUP37_dbz8_1L5Xeq3DhCMgyE6biXrbEynlcexG3YEC2baDnIKBMFKwaDprADtDY0CwfdtJ6m7Fh8vdQ05_jsSr25c6NM-4UDqy04MFrUxbwP4C-pyYM03uUEpjPjkJ7izT7dxFpjvLdKBckVli7673j-OewlPoaq8A768Assd5yrj4yE_cIPVg-qFwny4cFRt_I-XyLdLiKcRMfnUhxf83-Qete5Zn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68906572</pqid></control><display><type>article</type><title>Classification of adolescent psychotic disorders using linear discriminant analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pardo, Patricia J. ; Georgopoulos, Apostolos P. ; Kenny, John T. ; Stuve, Traci A. ; Findling, Robert L. ; Schulz, S. Charles</creator><creatorcontrib>Pardo, Patricia J. ; Georgopoulos, Apostolos P. ; Kenny, John T. ; Stuve, Traci A. ; Findling, Robert L. ; Schulz, S. Charles</creatorcontrib><description>The differential diagnosis between schizophrenia and bipolar disorder during adolescence presents a major clinical problem. Can these two diagnoses be differentiated objectively early in the courses of illness?
We used linear discrimination analysis (LDA) to classify 28 adolescent subjects into one of three diagnostic categories (healthy,
N
=
8; schizophrenia,
N
=
10; bipolar,
N
=
10) using subsets from a pool of 45 variables as potential predictors (22 neuropsychological test scores and 23 quantitative structural brain measurements). The predictor variables were adjusted for age, gender, race, and psychotropic medication. All possible subsets composed of
k
=
2–12 variables, from the set of 45 variables available, were evaluated using the robust leaving-one-subject-out method.
The highest correct classification (96%) of the 3 diagnostic categories was yielded by 9 sets of
k
=
12 predictors, comprising both neuropsychological and brain structural measures. Although each one of these sets misclassified one case, each set correctly classified (100%) at least one group, such that a fully correct diagnosis could be reached by a tree-type decision procedure.
We conclude that LDA with 12 predictor variables can provide correct and robust classification of subjects into the three diagnostic categories above. This robust classification relies upon both neuropsychological and brain structural information. Our results demonstrate that, despite overlapping clinical symptoms, schizophrenia and bipolar disorder can be differentiated early in the course of disease. This finding has two important implications. Firstly, schizophrenia and bipolar disorder are different illnesses. If schizophrenia and bipolar are dissimilar clinical manifestations of the same disease, we would not be able to use non-clinical information to classify (‘diagnose’) schizophrenia and bipolar disorder. Secondly, if this study's findings are replicated, brain structure (MRI) and brain function (neuropsychological) used together may be useful in the diagnosis of new patients.</description><identifier>ISSN: 0920-9964</identifier><identifier>EISSN: 1573-2509</identifier><identifier>DOI: 10.1016/j.schres.2006.05.007</identifier><identifier>PMID: 16797923</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adolescent ; Adult and adolescent clinical studies ; Biological and medical sciences ; Bipolar disorder ; Bipolar disorders ; Brain - pathology ; Diagnosis ; Discriminant Analysis ; Female ; Humans ; LDA ; Linear Models ; Magnetic Resonance Imaging ; Male ; Medical sciences ; Mood disorders ; MRI ; Neuropsychological ; Neuropsychological Tests ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Psychoses ; Psychotic Disorders - classification ; Psychotic Disorders - diagnosis ; Psychotic Disorders - epidemiology ; Schizophrenia ; Severity of Illness Index</subject><ispartof>Schizophrenia research, 2006-10, Vol.87 (1), p.297-306</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-dfab0a01367fe494ee55cab3b6305012281fd70dbed9a73970a37ebda094231e3</citedby><cites>FETCH-LOGICAL-c456t-dfab0a01367fe494ee55cab3b6305012281fd70dbed9a73970a37ebda094231e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.schres.2006.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18168748$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16797923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pardo, Patricia J.</creatorcontrib><creatorcontrib>Georgopoulos, Apostolos P.</creatorcontrib><creatorcontrib>Kenny, John T.</creatorcontrib><creatorcontrib>Stuve, Traci A.</creatorcontrib><creatorcontrib>Findling, Robert L.</creatorcontrib><creatorcontrib>Schulz, S. Charles</creatorcontrib><title>Classification of adolescent psychotic disorders using linear discriminant analysis</title><title>Schizophrenia research</title><addtitle>Schizophr Res</addtitle><description>The differential diagnosis between schizophrenia and bipolar disorder during adolescence presents a major clinical problem. Can these two diagnoses be differentiated objectively early in the courses of illness?
We used linear discrimination analysis (LDA) to classify 28 adolescent subjects into one of three diagnostic categories (healthy,
N
=
8; schizophrenia,
N
=
10; bipolar,
N
=
10) using subsets from a pool of 45 variables as potential predictors (22 neuropsychological test scores and 23 quantitative structural brain measurements). The predictor variables were adjusted for age, gender, race, and psychotropic medication. All possible subsets composed of
k
=
2–12 variables, from the set of 45 variables available, were evaluated using the robust leaving-one-subject-out method.
The highest correct classification (96%) of the 3 diagnostic categories was yielded by 9 sets of
k
=
12 predictors, comprising both neuropsychological and brain structural measures. Although each one of these sets misclassified one case, each set correctly classified (100%) at least one group, such that a fully correct diagnosis could be reached by a tree-type decision procedure.
We conclude that LDA with 12 predictor variables can provide correct and robust classification of subjects into the three diagnostic categories above. This robust classification relies upon both neuropsychological and brain structural information. Our results demonstrate that, despite overlapping clinical symptoms, schizophrenia and bipolar disorder can be differentiated early in the course of disease. This finding has two important implications. Firstly, schizophrenia and bipolar disorder are different illnesses. If schizophrenia and bipolar are dissimilar clinical manifestations of the same disease, we would not be able to use non-clinical information to classify (‘diagnose’) schizophrenia and bipolar disorder. Secondly, if this study's findings are replicated, brain structure (MRI) and brain function (neuropsychological) used together may be useful in the diagnosis of new patients.</description><subject>Adolescent</subject><subject>Adult and adolescent clinical studies</subject><subject>Biological and medical sciences</subject><subject>Bipolar disorder</subject><subject>Bipolar disorders</subject><subject>Brain - pathology</subject><subject>Diagnosis</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>Humans</subject><subject>LDA</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mood disorders</subject><subject>MRI</subject><subject>Neuropsychological</subject><subject>Neuropsychological Tests</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Psychoses</subject><subject>Psychotic Disorders - classification</subject><subject>Psychotic Disorders - diagnosis</subject><subject>Psychotic Disorders - epidemiology</subject><subject>Schizophrenia</subject><subject>Severity of Illness Index</subject><issn>0920-9964</issn><issn>1573-2509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMGKFDEQhoMo7rj6BiJ90Vu3le5O0rkIMqi7sOBBPYfqpNrN0NMZUz3CvL0ZZmBvngqK76_6-YR4K6GRIPXHXcP-MRM3LYBuQDUA5pnYSGW6ulVgn4sN2BZqa3V_I14x7wBAKjAvxY3UxhrbdhvxYzsjc5yixzWmpUpThSHNxJ6WtTrwyT-mNfoqRE45UObqyHH5Xc1xIczntc9xHxcsNC44nzjya_FiwpnpzXXeil9fv_zc3tUP37_dbz8_1L5Xeq3DhCMgyE6biXrbEynlcexG3YEC2baDnIKBMFKwaDprADtDY0CwfdtJ6m7Fh8vdQ05_jsSr25c6NM-4UDqy04MFrUxbwP4C-pyYM03uUEpjPjkJ7izT7dxFpjvLdKBckVli7673j-OewlPoaq8A768Assd5yrj4yE_cIPVg-qFwny4cFRt_I-XyLdLiKcRMfnUhxf83-Qete5Zn</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Pardo, Patricia J.</creator><creator>Georgopoulos, Apostolos P.</creator><creator>Kenny, John T.</creator><creator>Stuve, Traci A.</creator><creator>Findling, Robert L.</creator><creator>Schulz, S. Charles</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Classification of adolescent psychotic disorders using linear discriminant analysis</title><author>Pardo, Patricia J. ; Georgopoulos, Apostolos P. ; Kenny, John T. ; Stuve, Traci A. ; Findling, Robert L. ; Schulz, S. Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-dfab0a01367fe494ee55cab3b6305012281fd70dbed9a73970a37ebda094231e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adolescent</topic><topic>Adult and adolescent clinical studies</topic><topic>Biological and medical sciences</topic><topic>Bipolar disorder</topic><topic>Bipolar disorders</topic><topic>Brain - pathology</topic><topic>Diagnosis</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>Humans</topic><topic>LDA</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mood disorders</topic><topic>MRI</topic><topic>Neuropsychological</topic><topic>Neuropsychological Tests</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Psychoses</topic><topic>Psychotic Disorders - classification</topic><topic>Psychotic Disorders - diagnosis</topic><topic>Psychotic Disorders - epidemiology</topic><topic>Schizophrenia</topic><topic>Severity of Illness Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardo, Patricia J.</creatorcontrib><creatorcontrib>Georgopoulos, Apostolos P.</creatorcontrib><creatorcontrib>Kenny, John T.</creatorcontrib><creatorcontrib>Stuve, Traci A.</creatorcontrib><creatorcontrib>Findling, Robert L.</creatorcontrib><creatorcontrib>Schulz, S. Charles</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Schizophrenia research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardo, Patricia J.</au><au>Georgopoulos, Apostolos P.</au><au>Kenny, John T.</au><au>Stuve, Traci A.</au><au>Findling, Robert L.</au><au>Schulz, S. Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of adolescent psychotic disorders using linear discriminant analysis</atitle><jtitle>Schizophrenia research</jtitle><addtitle>Schizophr Res</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>87</volume><issue>1</issue><spage>297</spage><epage>306</epage><pages>297-306</pages><issn>0920-9964</issn><eissn>1573-2509</eissn><abstract>The differential diagnosis between schizophrenia and bipolar disorder during adolescence presents a major clinical problem. Can these two diagnoses be differentiated objectively early in the courses of illness?
We used linear discrimination analysis (LDA) to classify 28 adolescent subjects into one of three diagnostic categories (healthy,
N
=
8; schizophrenia,
N
=
10; bipolar,
N
=
10) using subsets from a pool of 45 variables as potential predictors (22 neuropsychological test scores and 23 quantitative structural brain measurements). The predictor variables were adjusted for age, gender, race, and psychotropic medication. All possible subsets composed of
k
=
2–12 variables, from the set of 45 variables available, were evaluated using the robust leaving-one-subject-out method.
The highest correct classification (96%) of the 3 diagnostic categories was yielded by 9 sets of
k
=
12 predictors, comprising both neuropsychological and brain structural measures. Although each one of these sets misclassified one case, each set correctly classified (100%) at least one group, such that a fully correct diagnosis could be reached by a tree-type decision procedure.
We conclude that LDA with 12 predictor variables can provide correct and robust classification of subjects into the three diagnostic categories above. This robust classification relies upon both neuropsychological and brain structural information. Our results demonstrate that, despite overlapping clinical symptoms, schizophrenia and bipolar disorder can be differentiated early in the course of disease. This finding has two important implications. Firstly, schizophrenia and bipolar disorder are different illnesses. If schizophrenia and bipolar are dissimilar clinical manifestations of the same disease, we would not be able to use non-clinical information to classify (‘diagnose’) schizophrenia and bipolar disorder. Secondly, if this study's findings are replicated, brain structure (MRI) and brain function (neuropsychological) used together may be useful in the diagnosis of new patients.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>16797923</pmid><doi>10.1016/j.schres.2006.05.007</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-9964 |
ispartof | Schizophrenia research, 2006-10, Vol.87 (1), p.297-306 |
issn | 0920-9964 1573-2509 |
language | eng |
recordid | cdi_proquest_miscellaneous_68906572 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adolescent Adult and adolescent clinical studies Biological and medical sciences Bipolar disorder Bipolar disorders Brain - pathology Diagnosis Discriminant Analysis Female Humans LDA Linear Models Magnetic Resonance Imaging Male Medical sciences Mood disorders MRI Neuropsychological Neuropsychological Tests Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses Psychotic Disorders - classification Psychotic Disorders - diagnosis Psychotic Disorders - epidemiology Schizophrenia Severity of Illness Index |
title | Classification of adolescent psychotic disorders using linear discriminant analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20adolescent%20psychotic%20disorders%20using%20linear%20discriminant%20analysis&rft.jtitle=Schizophrenia%20research&rft.au=Pardo,%20Patricia%20J.&rft.date=2006-10-01&rft.volume=87&rft.issue=1&rft.spage=297&rft.epage=306&rft.pages=297-306&rft.issn=0920-9964&rft.eissn=1573-2509&rft_id=info:doi/10.1016/j.schres.2006.05.007&rft_dat=%3Cproquest_cross%3E68906572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68906572&rft_id=info:pmid/16797923&rft_els_id=S0920996406002349&rfr_iscdi=true |