Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems
Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2006-10, Vol.78 (19), p.6747-6755 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6755 |
---|---|
container_issue | 19 |
container_start_page | 6747 |
container_title | Analytical chemistry (Washington) |
container_volume | 78 |
creator | Basa, Anna Magnuszewska, Jolanta Krogulec, Tadeusz Baranski, Andrzej S |
description | Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude. |
doi_str_mv | 10.1021/ac060331f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68904999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1169959401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</originalsourceid><addsrcrecordid>eNpl0N9P2zAQB3ALgaB0POwfmCKkIe0h2_lHHOcRFVpQK22ihVfrcB0IJHFnJ2L972fWqpXYk6W7j853X0I-U_hOgdEfaEAC57Q8IAOaMUilUuyQDACApywHOCGnIbwAUApUHpMTGmu5KPiATEdrU1cmGT1717qV62zbVa6xnV8nGBJMrmxnTSy1ycK5OimdT8a1e6vap2Tu6v5fZ74OnW3CJ3JUYh3s2fYdkvvx9WJ0k85-Tm5Hl7MUBaguZVwwRI6CZ5YxyJShJVuaTElhzSNXNpOFMgJpZrgEQS3HaEVeKg5imUk-JBebuSvvfvc2dLqpgrF1ja11fdBSFSCKoojw_AN8cb1v426a0VzFDwVE9G2DjHcheFvqla8a9GtNQb_Hq3fxRvtlO7B_bOxyL7d5RvB1CzAYrEuPranC3inGCpDvm6UbV8Xk_uz66F-1zHme6cWvuZ7CzcPVHQc92c9FE_ZH_L_gX0tfmvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217886440</pqid></control><display><type>article</type><title>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</title><source>American Chemical Society Journals</source><creator>Basa, Anna ; Magnuszewska, Jolanta ; Krogulec, Tadeusz ; Baranski, Andrzej S</creator><creatorcontrib>Basa, Anna ; Magnuszewska, Jolanta ; Krogulec, Tadeusz ; Baranski, Andrzej S</creatorcontrib><description>Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac060331f</identifier><identifier>PMID: 17007493</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Analytical chemistry ; Chemistry ; Electrochemical methods ; Electrodes ; Exact sciences and technology ; Oxidation ; Scientific imaging</subject><ispartof>Analytical chemistry (Washington), 2006-10, Vol.78 (19), p.6747-6755</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</citedby><cites>FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac060331f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac060331f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18229069$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17007493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basa, Anna</creatorcontrib><creatorcontrib>Magnuszewska, Jolanta</creatorcontrib><creatorcontrib>Krogulec, Tadeusz</creatorcontrib><creatorcontrib>Baranski, Andrzej S</creatorcontrib><title>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude.</description><subject>Adsorption</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Oxidation</subject><subject>Scientific imaging</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpl0N9P2zAQB3ALgaB0POwfmCKkIe0h2_lHHOcRFVpQK22ihVfrcB0IJHFnJ2L972fWqpXYk6W7j853X0I-U_hOgdEfaEAC57Q8IAOaMUilUuyQDACApywHOCGnIbwAUApUHpMTGmu5KPiATEdrU1cmGT1717qV62zbVa6xnV8nGBJMrmxnTSy1ycK5OimdT8a1e6vap2Tu6v5fZ74OnW3CJ3JUYh3s2fYdkvvx9WJ0k85-Tm5Hl7MUBaguZVwwRI6CZ5YxyJShJVuaTElhzSNXNpOFMgJpZrgEQS3HaEVeKg5imUk-JBebuSvvfvc2dLqpgrF1ja11fdBSFSCKoojw_AN8cb1v426a0VzFDwVE9G2DjHcheFvqla8a9GtNQb_Hq3fxRvtlO7B_bOxyL7d5RvB1CzAYrEuPranC3inGCpDvm6UbV8Xk_uz66F-1zHme6cWvuZ7CzcPVHQc92c9FE_ZH_L_gX0tfmvc</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Basa, Anna</creator><creator>Magnuszewska, Jolanta</creator><creator>Krogulec, Tadeusz</creator><creator>Baranski, Andrzej S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</title><author>Basa, Anna ; Magnuszewska, Jolanta ; Krogulec, Tadeusz ; Baranski, Andrzej S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Oxidation</topic><topic>Scientific imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basa, Anna</creatorcontrib><creatorcontrib>Magnuszewska, Jolanta</creatorcontrib><creatorcontrib>Krogulec, Tadeusz</creatorcontrib><creatorcontrib>Baranski, Andrzej S</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basa, Anna</au><au>Magnuszewska, Jolanta</au><au>Krogulec, Tadeusz</au><au>Baranski, Andrzej S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>78</volume><issue>19</issue><spage>6747</spage><epage>6755</epage><pages>6747-6755</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17007493</pmid><doi>10.1021/ac060331f</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2006-10, Vol.78 (19), p.6747-6755 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_68904999 |
source | American Chemical Society Journals |
subjects | Adsorption Analytical chemistry Chemistry Electrochemical methods Electrodes Exact sciences and technology Oxidation Scientific imaging |
title | Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20Chronopotentiometry%20as%20a%20Detection%20Tool%20for%20Flowing%20Solution%20Systems&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Basa,%20Anna&rft.date=2006-10-01&rft.volume=78&rft.issue=19&rft.spage=6747&rft.epage=6755&rft.pages=6747-6755&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac060331f&rft_dat=%3Cproquest_cross%3E1169959401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217886440&rft_id=info:pmid/17007493&rfr_iscdi=true |