Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems

Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2006-10, Vol.78 (19), p.6747-6755
Hauptverfasser: Basa, Anna, Magnuszewska, Jolanta, Krogulec, Tadeusz, Baranski, Andrzej S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6755
container_issue 19
container_start_page 6747
container_title Analytical chemistry (Washington)
container_volume 78
creator Basa, Anna
Magnuszewska, Jolanta
Krogulec, Tadeusz
Baranski, Andrzej S
description Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude.
doi_str_mv 10.1021/ac060331f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68904999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1169959401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</originalsourceid><addsrcrecordid>eNpl0N9P2zAQB3ALgaB0POwfmCKkIe0h2_lHHOcRFVpQK22ihVfrcB0IJHFnJ2L972fWqpXYk6W7j853X0I-U_hOgdEfaEAC57Q8IAOaMUilUuyQDACApywHOCGnIbwAUApUHpMTGmu5KPiATEdrU1cmGT1717qV62zbVa6xnV8nGBJMrmxnTSy1ycK5OimdT8a1e6vap2Tu6v5fZ74OnW3CJ3JUYh3s2fYdkvvx9WJ0k85-Tm5Hl7MUBaguZVwwRI6CZ5YxyJShJVuaTElhzSNXNpOFMgJpZrgEQS3HaEVeKg5imUk-JBebuSvvfvc2dLqpgrF1ja11fdBSFSCKoojw_AN8cb1v426a0VzFDwVE9G2DjHcheFvqla8a9GtNQb_Hq3fxRvtlO7B_bOxyL7d5RvB1CzAYrEuPranC3inGCpDvm6UbV8Xk_uz66F-1zHme6cWvuZ7CzcPVHQc92c9FE_ZH_L_gX0tfmvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217886440</pqid></control><display><type>article</type><title>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</title><source>American Chemical Society Journals</source><creator>Basa, Anna ; Magnuszewska, Jolanta ; Krogulec, Tadeusz ; Baranski, Andrzej S</creator><creatorcontrib>Basa, Anna ; Magnuszewska, Jolanta ; Krogulec, Tadeusz ; Baranski, Andrzej S</creatorcontrib><description>Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac060331f</identifier><identifier>PMID: 17007493</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Analytical chemistry ; Chemistry ; Electrochemical methods ; Electrodes ; Exact sciences and technology ; Oxidation ; Scientific imaging</subject><ispartof>Analytical chemistry (Washington), 2006-10, Vol.78 (19), p.6747-6755</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</citedby><cites>FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac060331f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac060331f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18229069$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17007493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basa, Anna</creatorcontrib><creatorcontrib>Magnuszewska, Jolanta</creatorcontrib><creatorcontrib>Krogulec, Tadeusz</creatorcontrib><creatorcontrib>Baranski, Andrzej S</creatorcontrib><title>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude.</description><subject>Adsorption</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Oxidation</subject><subject>Scientific imaging</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpl0N9P2zAQB3ALgaB0POwfmCKkIe0h2_lHHOcRFVpQK22ihVfrcB0IJHFnJ2L972fWqpXYk6W7j853X0I-U_hOgdEfaEAC57Q8IAOaMUilUuyQDACApywHOCGnIbwAUApUHpMTGmu5KPiATEdrU1cmGT1717qV62zbVa6xnV8nGBJMrmxnTSy1ycK5OimdT8a1e6vap2Tu6v5fZ74OnW3CJ3JUYh3s2fYdkvvx9WJ0k85-Tm5Hl7MUBaguZVwwRI6CZ5YxyJShJVuaTElhzSNXNpOFMgJpZrgEQS3HaEVeKg5imUk-JBebuSvvfvc2dLqpgrF1ja11fdBSFSCKoojw_AN8cb1v426a0VzFDwVE9G2DjHcheFvqla8a9GtNQb_Hq3fxRvtlO7B_bOxyL7d5RvB1CzAYrEuPranC3inGCpDvm6UbV8Xk_uz66F-1zHme6cWvuZ7CzcPVHQc92c9FE_ZH_L_gX0tfmvc</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Basa, Anna</creator><creator>Magnuszewska, Jolanta</creator><creator>Krogulec, Tadeusz</creator><creator>Baranski, Andrzej S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</title><author>Basa, Anna ; Magnuszewska, Jolanta ; Krogulec, Tadeusz ; Baranski, Andrzej S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-2342aa3a435e22058c1f2dc5864ecb38e5698c4a15c36041e3aa4347f8304d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Oxidation</topic><topic>Scientific imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basa, Anna</creatorcontrib><creatorcontrib>Magnuszewska, Jolanta</creatorcontrib><creatorcontrib>Krogulec, Tadeusz</creatorcontrib><creatorcontrib>Baranski, Andrzej S</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basa, Anna</au><au>Magnuszewska, Jolanta</au><au>Krogulec, Tadeusz</au><au>Baranski, Andrzej S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>78</volume><issue>19</issue><spage>6747</spage><epage>6755</epage><pages>6747-6755</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over ∼2 orders of magnitude.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17007493</pmid><doi>10.1021/ac060331f</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2006-10, Vol.78 (19), p.6747-6755
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_68904999
source American Chemical Society Journals
subjects Adsorption
Analytical chemistry
Chemistry
Electrochemical methods
Electrodes
Exact sciences and technology
Oxidation
Scientific imaging
title Cyclic Chronopotentiometry as a Detection Tool for Flowing Solution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20Chronopotentiometry%20as%20a%20Detection%20Tool%20for%20Flowing%20Solution%20Systems&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Basa,%20Anna&rft.date=2006-10-01&rft.volume=78&rft.issue=19&rft.spage=6747&rft.epage=6755&rft.pages=6747-6755&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac060331f&rft_dat=%3Cproquest_cross%3E1169959401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217886440&rft_id=info:pmid/17007493&rfr_iscdi=true