Total Synthesis of Guanacastepene A: A Route to Enantiomeric Control

The goal of the total synthesis of guanacastepene A served as a focus to bring together several chemical inquiries. One involved the synthesis of fused 5,7-hydrazulenones (see structure 20). Another issue had to do with the mechanistic intermediates in reductive cyclizations (see 17 to 18 and 19). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2005-12, Vol.70 (26), p.10619-10637
Hauptverfasser: Mandal, Mihirbaran, Yun, Heedong, Dudley, Gregory B, Lin, Songnian, Tan, Derek S, Danishefsky, Samuel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10637
container_issue 26
container_start_page 10619
container_title Journal of organic chemistry
container_volume 70
creator Mandal, Mihirbaran
Yun, Heedong
Dudley, Gregory B
Lin, Songnian
Tan, Derek S
Danishefsky, Samuel J
description The goal of the total synthesis of guanacastepene A served as a focus to bring together several chemical inquiries. One involved the synthesis of fused 5,7-hydrazulenones (see structure 20). Another issue had to do with the mechanistic intermediates in reductive cyclizations (see 17 to 18 and 19). The total synthesis required a mastery of an intramolecular Knoevenagel condensation of a β,γ-unsaturated ketone (see compound 41). Actually, cyclization was best accomplished when the terminal double bond of 41 was first converted to an epoxide. Further issues related to the stereochemistry at C5 and, rather surprisingly, the propensity for β-face acetoxylation at C13. Crystallographic verification of the assigned β-stereochemistry at C13 is provided. Finally, a route to optically active material is provided (see compound 20). A key element in this construction was an enantioselective addition of isopropenyl cuprate to 2-methylcyclopentenone (see compound 99).
doi_str_mv 10.1021/jo051470k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68904307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68904307</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-2662ecb1d84576e5925bed1ccd0d5aa0ac1b879ecee53be19e1fdf9434a52b7b3</originalsourceid><addsrcrecordid>eNptkE1P3DAQhq0KVBbooX-g8oVKPQT8EccbbqvlW7Sgsr30Yk2ciRrI2ovtSPDvcbUr9sJc5jCPXr3zEPKVs2POBD959EzxUrOnT2TClWBFVbNyh0wYE6KQopJ7ZD_GR5ZHKfWZ7PFKKlXrekLOFj7BQB9eXfqHsY_Ud_RyBAcWYsIVOqSzUzqjv_2YkCZPzx241Pslht7SuXcp-OGQ7HYwRPyy2Qfkz8X5Yn5V3N5dXs9ntwWUpU6FqCqBtuHttFS6QlUL1WDLrW1ZqwAYWN5MdY0WUckGeY28a7u6lCUo0ehGHpDv69xV8M8jxmSWfbQ4DODQj9FU0_y3ZDqDP9agDT7GgJ1ZhX4J4dVwZv4rM-_KMvttEzo2S2y35MZRBo42AEQLQxfA2T5uOS1rradl5oo112dzL-93CE-m0lIrs7h_MPrX2d-bxf1Pw7e5YGPuMwaX3X1Q8A3tAI56</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68904307</pqid></control><display><type>article</type><title>Total Synthesis of Guanacastepene A: A Route to Enantiomeric Control</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mandal, Mihirbaran ; Yun, Heedong ; Dudley, Gregory B ; Lin, Songnian ; Tan, Derek S ; Danishefsky, Samuel J</creator><creatorcontrib>Mandal, Mihirbaran ; Yun, Heedong ; Dudley, Gregory B ; Lin, Songnian ; Tan, Derek S ; Danishefsky, Samuel J</creatorcontrib><description>The goal of the total synthesis of guanacastepene A served as a focus to bring together several chemical inquiries. One involved the synthesis of fused 5,7-hydrazulenones (see structure 20). Another issue had to do with the mechanistic intermediates in reductive cyclizations (see 17 to 18 and 19). The total synthesis required a mastery of an intramolecular Knoevenagel condensation of a β,γ-unsaturated ketone (see compound 41). Actually, cyclization was best accomplished when the terminal double bond of 41 was first converted to an epoxide. Further issues related to the stereochemistry at C5 and, rather surprisingly, the propensity for β-face acetoxylation at C13. Crystallographic verification of the assigned β-stereochemistry at C13 is provided. Finally, a route to optically active material is provided (see compound 20). A key element in this construction was an enantioselective addition of isopropenyl cuprate to 2-methylcyclopentenone (see compound 99).</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/jo051470k</identifier><identifier>PMID: 16355979</identifier><identifier>CODEN: JOCEAH</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Alicyclic compounds, terpenoids, prostaglandins, steroids ; Chemistry ; Crystallography ; Diterpenes - chemical synthesis ; Diterpenes - chemistry ; Exact sciences and technology ; Magnetic Resonance Spectroscopy ; Organic chemistry ; Preparations and properties ; Spectrometry, Mass, Electrospray Ionization ; Stereoisomerism ; Terpenoids</subject><ispartof>Journal of organic chemistry, 2005-12, Vol.70 (26), p.10619-10637</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-2662ecb1d84576e5925bed1ccd0d5aa0ac1b879ecee53be19e1fdf9434a52b7b3</citedby><cites>FETCH-LOGICAL-a447t-2662ecb1d84576e5925bed1ccd0d5aa0ac1b879ecee53be19e1fdf9434a52b7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jo051470k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jo051470k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17397784$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16355979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Mihirbaran</creatorcontrib><creatorcontrib>Yun, Heedong</creatorcontrib><creatorcontrib>Dudley, Gregory B</creatorcontrib><creatorcontrib>Lin, Songnian</creatorcontrib><creatorcontrib>Tan, Derek S</creatorcontrib><creatorcontrib>Danishefsky, Samuel J</creatorcontrib><title>Total Synthesis of Guanacastepene A: A Route to Enantiomeric Control</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>The goal of the total synthesis of guanacastepene A served as a focus to bring together several chemical inquiries. One involved the synthesis of fused 5,7-hydrazulenones (see structure 20). Another issue had to do with the mechanistic intermediates in reductive cyclizations (see 17 to 18 and 19). The total synthesis required a mastery of an intramolecular Knoevenagel condensation of a β,γ-unsaturated ketone (see compound 41). Actually, cyclization was best accomplished when the terminal double bond of 41 was first converted to an epoxide. Further issues related to the stereochemistry at C5 and, rather surprisingly, the propensity for β-face acetoxylation at C13. Crystallographic verification of the assigned β-stereochemistry at C13 is provided. Finally, a route to optically active material is provided (see compound 20). A key element in this construction was an enantioselective addition of isopropenyl cuprate to 2-methylcyclopentenone (see compound 99).</description><subject>Alicyclic compounds, terpenoids, prostaglandins, steroids</subject><subject>Chemistry</subject><subject>Crystallography</subject><subject>Diterpenes - chemical synthesis</subject><subject>Diterpenes - chemistry</subject><subject>Exact sciences and technology</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Organic chemistry</subject><subject>Preparations and properties</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Stereoisomerism</subject><subject>Terpenoids</subject><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1P3DAQhq0KVBbooX-g8oVKPQT8EccbbqvlW7Sgsr30Yk2ciRrI2ovtSPDvcbUr9sJc5jCPXr3zEPKVs2POBD959EzxUrOnT2TClWBFVbNyh0wYE6KQopJ7ZD_GR5ZHKfWZ7PFKKlXrekLOFj7BQB9eXfqHsY_Ud_RyBAcWYsIVOqSzUzqjv_2YkCZPzx241Pslht7SuXcp-OGQ7HYwRPyy2Qfkz8X5Yn5V3N5dXs9ntwWUpU6FqCqBtuHttFS6QlUL1WDLrW1ZqwAYWN5MdY0WUckGeY28a7u6lCUo0ehGHpDv69xV8M8jxmSWfbQ4DODQj9FU0_y3ZDqDP9agDT7GgJ1ZhX4J4dVwZv4rM-_KMvttEzo2S2y35MZRBo42AEQLQxfA2T5uOS1rradl5oo112dzL-93CE-m0lIrs7h_MPrX2d-bxf1Pw7e5YGPuMwaX3X1Q8A3tAI56</recordid><startdate>20051223</startdate><enddate>20051223</enddate><creator>Mandal, Mihirbaran</creator><creator>Yun, Heedong</creator><creator>Dudley, Gregory B</creator><creator>Lin, Songnian</creator><creator>Tan, Derek S</creator><creator>Danishefsky, Samuel J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051223</creationdate><title>Total Synthesis of Guanacastepene A: A Route to Enantiomeric Control</title><author>Mandal, Mihirbaran ; Yun, Heedong ; Dudley, Gregory B ; Lin, Songnian ; Tan, Derek S ; Danishefsky, Samuel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-2662ecb1d84576e5925bed1ccd0d5aa0ac1b879ecee53be19e1fdf9434a52b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alicyclic compounds, terpenoids, prostaglandins, steroids</topic><topic>Chemistry</topic><topic>Crystallography</topic><topic>Diterpenes - chemical synthesis</topic><topic>Diterpenes - chemistry</topic><topic>Exact sciences and technology</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Organic chemistry</topic><topic>Preparations and properties</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Stereoisomerism</topic><topic>Terpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Mihirbaran</creatorcontrib><creatorcontrib>Yun, Heedong</creatorcontrib><creatorcontrib>Dudley, Gregory B</creatorcontrib><creatorcontrib>Lin, Songnian</creatorcontrib><creatorcontrib>Tan, Derek S</creatorcontrib><creatorcontrib>Danishefsky, Samuel J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Mihirbaran</au><au>Yun, Heedong</au><au>Dudley, Gregory B</au><au>Lin, Songnian</au><au>Tan, Derek S</au><au>Danishefsky, Samuel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Synthesis of Guanacastepene A: A Route to Enantiomeric Control</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2005-12-23</date><risdate>2005</risdate><volume>70</volume><issue>26</issue><spage>10619</spage><epage>10637</epage><pages>10619-10637</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><coden>JOCEAH</coden><abstract>The goal of the total synthesis of guanacastepene A served as a focus to bring together several chemical inquiries. One involved the synthesis of fused 5,7-hydrazulenones (see structure 20). Another issue had to do with the mechanistic intermediates in reductive cyclizations (see 17 to 18 and 19). The total synthesis required a mastery of an intramolecular Knoevenagel condensation of a β,γ-unsaturated ketone (see compound 41). Actually, cyclization was best accomplished when the terminal double bond of 41 was first converted to an epoxide. Further issues related to the stereochemistry at C5 and, rather surprisingly, the propensity for β-face acetoxylation at C13. Crystallographic verification of the assigned β-stereochemistry at C13 is provided. Finally, a route to optically active material is provided (see compound 20). A key element in this construction was an enantioselective addition of isopropenyl cuprate to 2-methylcyclopentenone (see compound 99).</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16355979</pmid><doi>10.1021/jo051470k</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2005-12, Vol.70 (26), p.10619-10637
issn 0022-3263
1520-6904
language eng
recordid cdi_proquest_miscellaneous_68904307
source MEDLINE; ACS Publications
subjects Alicyclic compounds, terpenoids, prostaglandins, steroids
Chemistry
Crystallography
Diterpenes - chemical synthesis
Diterpenes - chemistry
Exact sciences and technology
Magnetic Resonance Spectroscopy
Organic chemistry
Preparations and properties
Spectrometry, Mass, Electrospray Ionization
Stereoisomerism
Terpenoids
title Total Synthesis of Guanacastepene A: A Route to Enantiomeric Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Synthesis%20of%20Guanacastepene%20A:%20A%20Route%20to%20Enantiomeric%20Control&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Mandal,%20Mihirbaran&rft.date=2005-12-23&rft.volume=70&rft.issue=26&rft.spage=10619&rft.epage=10637&rft.pages=10619-10637&rft.issn=0022-3263&rft.eissn=1520-6904&rft.coden=JOCEAH&rft_id=info:doi/10.1021/jo051470k&rft_dat=%3Cproquest_cross%3E68904307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68904307&rft_id=info:pmid/16355979&rfr_iscdi=true