Probing the Water Coordination of Protein-Targeted MRI Contrast Agents by Pulsed ENDOR Spectroscopy
A novel methodology based on electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of the water coordination number (q) of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. Proton ENDOR spectra can be obtained at approximately physiological conc...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2005-12, Vol.6 (12), p.2570-2577 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2577 |
---|---|
container_issue | 12 |
container_start_page | 2570 |
container_title | Chemphyschem |
container_volume | 6 |
creator | Zech, Stephan G. Sun, Wei-Chuan Jacques, Vincent Caravan, Peter Astashkin, Andrei V. Raitsimring, Arnold M. |
description | A novel methodology based on electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of the water coordination number (q) of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. Proton ENDOR spectra can be obtained at approximately physiological concentrations for metal complexes in frozen aqueous solutions either in the presence or absence of protein targets. It is shown that, depending on the structure of the co‐ligand, the water hydration number of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein. From the ENDOR spectra of the exchangeable protons, precise information on the metal–proton distance can be derived as well. These essential parameters directly correlate with the efficacy of MRI contrast agents and should therefore aid the development of novel, highly efficient compounds targeted to various proteins.
Electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of water coordination numbers and proton–metal distances of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. It is shown that the water hydration number q of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein (see picture; HSA= human serum albumin). |
doi_str_mv | 10.1002/cphc.200500250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68894758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68894758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4110-217282d7763ae89e40e7fede1ccd86b5dd9bd9a1cab86e23190e163dee50cfd13</originalsourceid><addsrcrecordid>eNqF0Mtv3CAQB2BUtWoe7bXHikt78xaMAfsYuXlVeWyTVKn2gjCMN269xgFWyf73JVorya0nQPPNMPoh9ImSGSUk_2bGOzPLCeHpwckbtEsLVmVSFPTtdC9yxnfQXgh_CCElkfQ92qEirwrG2S4yc--abljieAf4VkfwuHbO227QsXMDdi1OIkI3ZDfaLyGCxedXpwkN0esQ8cEShhhws8HzdR9S9fDi--UVvh7BRO-CcePmA3rX6lT7OJ376NfR4U19kp1dHp_WB2eZKSglWU5lXuZWSsE0lBUUBGQLFqgxthQNt7ZqbKWp0U0pIGe0IkAFswCcmNZSto--bueO3t2vIUS16oKBvtcDuHVQoiyrQvIywdkWmrRh8NCq0Xcr7TeKEvUUq3qKVT3Hmho-T5PXzQrsC59yTODLBHQwum-9HkwXXpxklJeCJ1dt3UPXw-Y_36p6flK_XiLb9nYhwuNzr_Z_lZBMcnV7cax-Xi8Wv4_4Qv1g_wBUnKEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68894758</pqid></control><display><type>article</type><title>Probing the Water Coordination of Protein-Targeted MRI Contrast Agents by Pulsed ENDOR Spectroscopy</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Zech, Stephan G. ; Sun, Wei-Chuan ; Jacques, Vincent ; Caravan, Peter ; Astashkin, Andrei V. ; Raitsimring, Arnold M.</creator><creatorcontrib>Zech, Stephan G. ; Sun, Wei-Chuan ; Jacques, Vincent ; Caravan, Peter ; Astashkin, Andrei V. ; Raitsimring, Arnold M.</creatorcontrib><description>A novel methodology based on electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of the water coordination number (q) of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. Proton ENDOR spectra can be obtained at approximately physiological concentrations for metal complexes in frozen aqueous solutions either in the presence or absence of protein targets. It is shown that, depending on the structure of the co‐ligand, the water hydration number of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein. From the ENDOR spectra of the exchangeable protons, precise information on the metal–proton distance can be derived as well. These essential parameters directly correlate with the efficacy of MRI contrast agents and should therefore aid the development of novel, highly efficient compounds targeted to various proteins.
Electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of water coordination numbers and proton–metal distances of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. It is shown that the water hydration number q of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein (see picture; HSA= human serum albumin).</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.200500250</identifier><identifier>PMID: 16294353</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Contrast Media - chemistry ; Electron Spin Resonance Spectroscopy ; ENDOR spectroscopy ; Fundamental and applied biological sciences. Psychology ; Gadolinium - chemistry ; hyperfine couplings ; Magnetic Resonance Imaging ; metal complexes ; Molecular Structure ; Protein Binding ; proteins ; Proteins - chemistry ; Solutions ; transition metals ; Water - chemistry</subject><ispartof>Chemphyschem, 2005-12, Vol.6 (12), p.2570-2577</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4110-217282d7763ae89e40e7fede1ccd86b5dd9bd9a1cab86e23190e163dee50cfd13</citedby><cites>FETCH-LOGICAL-c4110-217282d7763ae89e40e7fede1ccd86b5dd9bd9a1cab86e23190e163dee50cfd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.200500250$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.200500250$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17315865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16294353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zech, Stephan G.</creatorcontrib><creatorcontrib>Sun, Wei-Chuan</creatorcontrib><creatorcontrib>Jacques, Vincent</creatorcontrib><creatorcontrib>Caravan, Peter</creatorcontrib><creatorcontrib>Astashkin, Andrei V.</creatorcontrib><creatorcontrib>Raitsimring, Arnold M.</creatorcontrib><title>Probing the Water Coordination of Protein-Targeted MRI Contrast Agents by Pulsed ENDOR Spectroscopy</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>A novel methodology based on electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of the water coordination number (q) of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. Proton ENDOR spectra can be obtained at approximately physiological concentrations for metal complexes in frozen aqueous solutions either in the presence or absence of protein targets. It is shown that, depending on the structure of the co‐ligand, the water hydration number of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein. From the ENDOR spectra of the exchangeable protons, precise information on the metal–proton distance can be derived as well. These essential parameters directly correlate with the efficacy of MRI contrast agents and should therefore aid the development of novel, highly efficient compounds targeted to various proteins.
Electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of water coordination numbers and proton–metal distances of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. It is shown that the water hydration number q of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein (see picture; HSA= human serum albumin).</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Contrast Media - chemistry</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>ENDOR spectroscopy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gadolinium - chemistry</subject><subject>hyperfine couplings</subject><subject>Magnetic Resonance Imaging</subject><subject>metal complexes</subject><subject>Molecular Structure</subject><subject>Protein Binding</subject><subject>proteins</subject><subject>Proteins - chemistry</subject><subject>Solutions</subject><subject>transition metals</subject><subject>Water - chemistry</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Mtv3CAQB2BUtWoe7bXHikt78xaMAfsYuXlVeWyTVKn2gjCMN269xgFWyf73JVorya0nQPPNMPoh9ImSGSUk_2bGOzPLCeHpwckbtEsLVmVSFPTtdC9yxnfQXgh_CCElkfQ92qEirwrG2S4yc--abljieAf4VkfwuHbO227QsXMDdi1OIkI3ZDfaLyGCxedXpwkN0esQ8cEShhhws8HzdR9S9fDi--UVvh7BRO-CcePmA3rX6lT7OJ376NfR4U19kp1dHp_WB2eZKSglWU5lXuZWSsE0lBUUBGQLFqgxthQNt7ZqbKWp0U0pIGe0IkAFswCcmNZSto--bueO3t2vIUS16oKBvtcDuHVQoiyrQvIywdkWmrRh8NCq0Xcr7TeKEvUUq3qKVT3Hmho-T5PXzQrsC59yTODLBHQwum-9HkwXXpxklJeCJ1dt3UPXw-Y_36p6flK_XiLb9nYhwuNzr_Z_lZBMcnV7cax-Xi8Wv4_4Qv1g_wBUnKEI</recordid><startdate>20051209</startdate><enddate>20051209</enddate><creator>Zech, Stephan G.</creator><creator>Sun, Wei-Chuan</creator><creator>Jacques, Vincent</creator><creator>Caravan, Peter</creator><creator>Astashkin, Andrei V.</creator><creator>Raitsimring, Arnold M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051209</creationdate><title>Probing the Water Coordination of Protein-Targeted MRI Contrast Agents by Pulsed ENDOR Spectroscopy</title><author>Zech, Stephan G. ; Sun, Wei-Chuan ; Jacques, Vincent ; Caravan, Peter ; Astashkin, Andrei V. ; Raitsimring, Arnold M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4110-217282d7763ae89e40e7fede1ccd86b5dd9bd9a1cab86e23190e163dee50cfd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Contrast Media - chemistry</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>ENDOR spectroscopy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gadolinium - chemistry</topic><topic>hyperfine couplings</topic><topic>Magnetic Resonance Imaging</topic><topic>metal complexes</topic><topic>Molecular Structure</topic><topic>Protein Binding</topic><topic>proteins</topic><topic>Proteins - chemistry</topic><topic>Solutions</topic><topic>transition metals</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zech, Stephan G.</creatorcontrib><creatorcontrib>Sun, Wei-Chuan</creatorcontrib><creatorcontrib>Jacques, Vincent</creatorcontrib><creatorcontrib>Caravan, Peter</creatorcontrib><creatorcontrib>Astashkin, Andrei V.</creatorcontrib><creatorcontrib>Raitsimring, Arnold M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zech, Stephan G.</au><au>Sun, Wei-Chuan</au><au>Jacques, Vincent</au><au>Caravan, Peter</au><au>Astashkin, Andrei V.</au><au>Raitsimring, Arnold M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Water Coordination of Protein-Targeted MRI Contrast Agents by Pulsed ENDOR Spectroscopy</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2005-12-09</date><risdate>2005</risdate><volume>6</volume><issue>12</issue><spage>2570</spage><epage>2577</epage><pages>2570-2577</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>A novel methodology based on electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of the water coordination number (q) of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. Proton ENDOR spectra can be obtained at approximately physiological concentrations for metal complexes in frozen aqueous solutions either in the presence or absence of protein targets. It is shown that, depending on the structure of the co‐ligand, the water hydration number of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein. From the ENDOR spectra of the exchangeable protons, precise information on the metal–proton distance can be derived as well. These essential parameters directly correlate with the efficacy of MRI contrast agents and should therefore aid the development of novel, highly efficient compounds targeted to various proteins.
Electron–nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of water coordination numbers and proton–metal distances of gadolinium‐based magnetic resonance imaging (MRI) contrast agents. It is shown that the water hydration number q of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein (see picture; HSA= human serum albumin).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16294353</pmid><doi>10.1002/cphc.200500250</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2005-12, Vol.6 (12), p.2570-2577 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_proquest_miscellaneous_68894758 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Analytical, structural and metabolic biochemistry Biological and medical sciences Contrast Media - chemistry Electron Spin Resonance Spectroscopy ENDOR spectroscopy Fundamental and applied biological sciences. Psychology Gadolinium - chemistry hyperfine couplings Magnetic Resonance Imaging metal complexes Molecular Structure Protein Binding proteins Proteins - chemistry Solutions transition metals Water - chemistry |
title | Probing the Water Coordination of Protein-Targeted MRI Contrast Agents by Pulsed ENDOR Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Water%20Coordination%20of%20Protein-Targeted%20MRI%20Contrast%20Agents%20by%20Pulsed%20ENDOR%20Spectroscopy&rft.jtitle=Chemphyschem&rft.au=Zech,%20Stephan%20G.&rft.date=2005-12-09&rft.volume=6&rft.issue=12&rft.spage=2570&rft.epage=2577&rft.pages=2570-2577&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.200500250&rft_dat=%3Cproquest_cross%3E68894758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68894758&rft_id=info:pmid/16294353&rfr_iscdi=true |