Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model
Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse so...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2005-12, Vol.31 (12), p.1631-1645 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1645 |
---|---|
container_issue | 12 |
container_start_page | 1631 |
container_title | Ultrasound in medicine & biology |
container_volume | 31 |
creator | Baldewsing, Radj A. Mastik, Frits Schaar, Johannes A. Serruys, Patrick W. van Der Steen, Antonius F.W. |
description | Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram (
i.e., Young’s modulus image) from a plaque strain elastogram (
i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) (
i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an
in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis
in vivo. (E-mail:
r.baldewsing@erasmusmc.nl) |
doi_str_mv | 10.1016/j.ultrasmedbio.2005.08.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68889638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562905003194</els_id><sourcerecordid>68889638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</originalsourceid><addsrcrecordid>eNqNkcuKFTEQhoMozpnRV5Dgwl23SXc63XEn42WEAUEUdBVyqR5zSHeOuQy4c-ND-Ho-iWnOEd3pJlnU91el8iH0mJKWEsqf7tvic1RpAatdaDtChpZMLSH8DtrRaRRNJ-jHu2hHekKbgXfiDJ2ntCeEjLwf76MzynvGaMd36Pu7oEvKK6SEw4wjmLCmHIvJbr3B-TPgT6GsNz-__Uh4Cbb4krB1lXC6ZBfWLXRb_ApRaQ9Y1UQMyfh6ZmfwwasvBRIuaWun8EFFtUBN_y5tTcE_QPdm5RM8PN0X6MOrl-8vr5rrt6_fXD6_bgwjIjdUkG6whtleK250x8eB6plaDeOsWGfE1I-MwaiI5bOwszEDsYLrvm7e82nsL9CTY99DDNu7slxcMuC9WiGUJPk0TYL30z9BKoauY4xV8NkRNHXtFGGWh-gWFb9KSuRmS-7l37bkZkuSSVZbNfzoNKXoWv4TPempwIsjAPVTbh1EmYyD1YB11VSWNrj_mfMLZrWy0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19522444</pqid></control><display><type>article</type><title>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Baldewsing, Radj A. ; Mastik, Frits ; Schaar, Johannes A. ; Serruys, Patrick W. ; van Der Steen, Antonius F.W.</creator><creatorcontrib>Baldewsing, Radj A. ; Mastik, Frits ; Schaar, Johannes A. ; Serruys, Patrick W. ; van Der Steen, Antonius F.W.</creatorcontrib><description>Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram (
i.e., Young’s modulus image) from a plaque strain elastogram (
i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) (
i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an
in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis
in vivo. (E-mail:
r.baldewsing@erasmusmc.nl)</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2005.08.006</identifier><identifier>PMID: 16344126</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Algorithms ; Atherosclerosis ; Atherosclerosis - diagnostic imaging ; Atherosclerosis - pathology ; Catheter position ; Computer Simulation ; Elasticity ; Finite Element Analysis ; Finite element method ; Humans ; Intravascular ultrasound elastography ; Inverse problem ; Models, Cardiovascular ; Noise ; Robustness ; Strain ; Tissue characterization ; Ultrasonography, Interventional ; Vulnerable plaque ; Young’s modulus</subject><ispartof>Ultrasound in medicine & biology, 2005-12, Vol.31 (12), p.1631-1645</ispartof><rights>2005 World Federation for Ultrasound in Medicine & Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</citedby><cites>FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2005.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16344126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldewsing, Radj A.</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Schaar, Johannes A.</creatorcontrib><creatorcontrib>Serruys, Patrick W.</creatorcontrib><creatorcontrib>van Der Steen, Antonius F.W.</creatorcontrib><title>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram (
i.e., Young’s modulus image) from a plaque strain elastogram (
i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) (
i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an
in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis
in vivo. (E-mail:
r.baldewsing@erasmusmc.nl)</description><subject>Algorithms</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - diagnostic imaging</subject><subject>Atherosclerosis - pathology</subject><subject>Catheter position</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Humans</subject><subject>Intravascular ultrasound elastography</subject><subject>Inverse problem</subject><subject>Models, Cardiovascular</subject><subject>Noise</subject><subject>Robustness</subject><subject>Strain</subject><subject>Tissue characterization</subject><subject>Ultrasonography, Interventional</subject><subject>Vulnerable plaque</subject><subject>Young’s modulus</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuKFTEQhoMozpnRV5Dgwl23SXc63XEn42WEAUEUdBVyqR5zSHeOuQy4c-ND-Ho-iWnOEd3pJlnU91el8iH0mJKWEsqf7tvic1RpAatdaDtChpZMLSH8DtrRaRRNJ-jHu2hHekKbgXfiDJ2ntCeEjLwf76MzynvGaMd36Pu7oEvKK6SEw4wjmLCmHIvJbr3B-TPgT6GsNz-__Uh4Cbb4krB1lXC6ZBfWLXRb_ApRaQ9Y1UQMyfh6ZmfwwasvBRIuaWun8EFFtUBN_y5tTcE_QPdm5RM8PN0X6MOrl-8vr5rrt6_fXD6_bgwjIjdUkG6whtleK250x8eB6plaDeOsWGfE1I-MwaiI5bOwszEDsYLrvm7e82nsL9CTY99DDNu7slxcMuC9WiGUJPk0TYL30z9BKoauY4xV8NkRNHXtFGGWh-gWFb9KSuRmS-7l37bkZkuSSVZbNfzoNKXoWv4TPempwIsjAPVTbh1EmYyD1YB11VSWNrj_mfMLZrWy0A</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Baldewsing, Radj A.</creator><creator>Mastik, Frits</creator><creator>Schaar, Johannes A.</creator><creator>Serruys, Patrick W.</creator><creator>van Der Steen, Antonius F.W.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</title><author>Baldewsing, Radj A. ; Mastik, Frits ; Schaar, Johannes A. ; Serruys, Patrick W. ; van Der Steen, Antonius F.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - diagnostic imaging</topic><topic>Atherosclerosis - pathology</topic><topic>Catheter position</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Humans</topic><topic>Intravascular ultrasound elastography</topic><topic>Inverse problem</topic><topic>Models, Cardiovascular</topic><topic>Noise</topic><topic>Robustness</topic><topic>Strain</topic><topic>Tissue characterization</topic><topic>Ultrasonography, Interventional</topic><topic>Vulnerable plaque</topic><topic>Young’s modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldewsing, Radj A.</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Schaar, Johannes A.</creatorcontrib><creatorcontrib>Serruys, Patrick W.</creatorcontrib><creatorcontrib>van Der Steen, Antonius F.W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldewsing, Radj A.</au><au>Mastik, Frits</au><au>Schaar, Johannes A.</au><au>Serruys, Patrick W.</au><au>van Der Steen, Antonius F.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>31</volume><issue>12</issue><spage>1631</spage><epage>1645</epage><pages>1631-1645</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram (
i.e., Young’s modulus image) from a plaque strain elastogram (
i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) (
i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an
in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis
in vivo. (E-mail:
r.baldewsing@erasmusmc.nl)</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>16344126</pmid><doi>10.1016/j.ultrasmedbio.2005.08.006</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 2005-12, Vol.31 (12), p.1631-1645 |
issn | 0301-5629 1879-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_68889638 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Atherosclerosis Atherosclerosis - diagnostic imaging Atherosclerosis - pathology Catheter position Computer Simulation Elasticity Finite Element Analysis Finite element method Humans Intravascular ultrasound elastography Inverse problem Models, Cardiovascular Noise Robustness Strain Tissue characterization Ultrasonography, Interventional Vulnerable plaque Young’s modulus |
title | Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20reconstructing%20the%20Young%E2%80%99s%20modulus%20distribution%20of%20vulnerable%20atherosclerotic%20plaques%20using%20a%20parametric%20plaque%20model&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Baldewsing,%20Radj%20A.&rft.date=2005-12-01&rft.volume=31&rft.issue=12&rft.spage=1631&rft.epage=1645&rft.pages=1631-1645&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2005.08.006&rft_dat=%3Cproquest_cross%3E68889638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19522444&rft_id=info:pmid/16344126&rft_els_id=S0301562905003194&rfr_iscdi=true |