Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model

Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2005-12, Vol.31 (12), p.1631-1645
Hauptverfasser: Baldewsing, Radj A., Mastik, Frits, Schaar, Johannes A., Serruys, Patrick W., van Der Steen, Antonius F.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1645
container_issue 12
container_start_page 1631
container_title Ultrasound in medicine & biology
container_volume 31
creator Baldewsing, Radj A.
Mastik, Frits
Schaar, Johannes A.
Serruys, Patrick W.
van Der Steen, Antonius F.W.
description Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram ( i.e., Young’s modulus image) from a plaque strain elastogram ( i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) ( i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis in vivo. (E-mail: r.baldewsing@erasmusmc.nl)
doi_str_mv 10.1016/j.ultrasmedbio.2005.08.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68889638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562905003194</els_id><sourcerecordid>68889638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</originalsourceid><addsrcrecordid>eNqNkcuKFTEQhoMozpnRV5Dgwl23SXc63XEn42WEAUEUdBVyqR5zSHeOuQy4c-ND-Ho-iWnOEd3pJlnU91el8iH0mJKWEsqf7tvic1RpAatdaDtChpZMLSH8DtrRaRRNJ-jHu2hHekKbgXfiDJ2ntCeEjLwf76MzynvGaMd36Pu7oEvKK6SEw4wjmLCmHIvJbr3B-TPgT6GsNz-__Uh4Cbb4krB1lXC6ZBfWLXRb_ApRaQ9Y1UQMyfh6ZmfwwasvBRIuaWun8EFFtUBN_y5tTcE_QPdm5RM8PN0X6MOrl-8vr5rrt6_fXD6_bgwjIjdUkG6whtleK250x8eB6plaDeOsWGfE1I-MwaiI5bOwszEDsYLrvm7e82nsL9CTY99DDNu7slxcMuC9WiGUJPk0TYL30z9BKoauY4xV8NkRNHXtFGGWh-gWFb9KSuRmS-7l37bkZkuSSVZbNfzoNKXoWv4TPempwIsjAPVTbh1EmYyD1YB11VSWNrj_mfMLZrWy0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19522444</pqid></control><display><type>article</type><title>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Baldewsing, Radj A. ; Mastik, Frits ; Schaar, Johannes A. ; Serruys, Patrick W. ; van Der Steen, Antonius F.W.</creator><creatorcontrib>Baldewsing, Radj A. ; Mastik, Frits ; Schaar, Johannes A. ; Serruys, Patrick W. ; van Der Steen, Antonius F.W.</creatorcontrib><description>Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram ( i.e., Young’s modulus image) from a plaque strain elastogram ( i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) ( i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis in vivo. (E-mail: r.baldewsing@erasmusmc.nl)</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2005.08.006</identifier><identifier>PMID: 16344126</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Algorithms ; Atherosclerosis ; Atherosclerosis - diagnostic imaging ; Atherosclerosis - pathology ; Catheter position ; Computer Simulation ; Elasticity ; Finite Element Analysis ; Finite element method ; Humans ; Intravascular ultrasound elastography ; Inverse problem ; Models, Cardiovascular ; Noise ; Robustness ; Strain ; Tissue characterization ; Ultrasonography, Interventional ; Vulnerable plaque ; Young’s modulus</subject><ispartof>Ultrasound in medicine &amp; biology, 2005-12, Vol.31 (12), p.1631-1645</ispartof><rights>2005 World Federation for Ultrasound in Medicine &amp; Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</citedby><cites>FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2005.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16344126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldewsing, Radj A.</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Schaar, Johannes A.</creatorcontrib><creatorcontrib>Serruys, Patrick W.</creatorcontrib><creatorcontrib>van Der Steen, Antonius F.W.</creatorcontrib><title>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</title><title>Ultrasound in medicine &amp; biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram ( i.e., Young’s modulus image) from a plaque strain elastogram ( i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) ( i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis in vivo. (E-mail: r.baldewsing@erasmusmc.nl)</description><subject>Algorithms</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - diagnostic imaging</subject><subject>Atherosclerosis - pathology</subject><subject>Catheter position</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Humans</subject><subject>Intravascular ultrasound elastography</subject><subject>Inverse problem</subject><subject>Models, Cardiovascular</subject><subject>Noise</subject><subject>Robustness</subject><subject>Strain</subject><subject>Tissue characterization</subject><subject>Ultrasonography, Interventional</subject><subject>Vulnerable plaque</subject><subject>Young’s modulus</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuKFTEQhoMozpnRV5Dgwl23SXc63XEn42WEAUEUdBVyqR5zSHeOuQy4c-ND-Ho-iWnOEd3pJlnU91el8iH0mJKWEsqf7tvic1RpAatdaDtChpZMLSH8DtrRaRRNJ-jHu2hHekKbgXfiDJ2ntCeEjLwf76MzynvGaMd36Pu7oEvKK6SEw4wjmLCmHIvJbr3B-TPgT6GsNz-__Uh4Cbb4krB1lXC6ZBfWLXRb_ApRaQ9Y1UQMyfh6ZmfwwasvBRIuaWun8EFFtUBN_y5tTcE_QPdm5RM8PN0X6MOrl-8vr5rrt6_fXD6_bgwjIjdUkG6whtleK250x8eB6plaDeOsWGfE1I-MwaiI5bOwszEDsYLrvm7e82nsL9CTY99DDNu7slxcMuC9WiGUJPk0TYL30z9BKoauY4xV8NkRNHXtFGGWh-gWFb9KSuRmS-7l37bkZkuSSVZbNfzoNKXoWv4TPempwIsjAPVTbh1EmYyD1YB11VSWNrj_mfMLZrWy0A</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Baldewsing, Radj A.</creator><creator>Mastik, Frits</creator><creator>Schaar, Johannes A.</creator><creator>Serruys, Patrick W.</creator><creator>van Der Steen, Antonius F.W.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</title><author>Baldewsing, Radj A. ; Mastik, Frits ; Schaar, Johannes A. ; Serruys, Patrick W. ; van Der Steen, Antonius F.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-19025dc4d3ba6cb26751bf1dbe7fa42c983744e7a0d6f9dfcc50d96b300036873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - diagnostic imaging</topic><topic>Atherosclerosis - pathology</topic><topic>Catheter position</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Humans</topic><topic>Intravascular ultrasound elastography</topic><topic>Inverse problem</topic><topic>Models, Cardiovascular</topic><topic>Noise</topic><topic>Robustness</topic><topic>Strain</topic><topic>Tissue characterization</topic><topic>Ultrasonography, Interventional</topic><topic>Vulnerable plaque</topic><topic>Young’s modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldewsing, Radj A.</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Schaar, Johannes A.</creatorcontrib><creatorcontrib>Serruys, Patrick W.</creatorcontrib><creatorcontrib>van Der Steen, Antonius F.W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldewsing, Radj A.</au><au>Mastik, Frits</au><au>Schaar, Johannes A.</au><au>Serruys, Patrick W.</au><au>van Der Steen, Antonius F.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model</atitle><jtitle>Ultrasound in medicine &amp; biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>31</volume><issue>12</issue><spage>1631</spage><epage>1645</epage><pages>1631-1645</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>Assessment of atherosclerotic plaque composition is crucial for quantitative monitoring of atherosclerosis and for quantifying the effect of pharmaceutical plaque-stabilizing treatments during clinical trials. We assessed this composition by applying a geometrically constrained, iterative inverse solution method to reconstruct a modulus elastogram ( i.e., Young’s modulus image) from a plaque strain elastogram ( i.e., radial strain image) that is measured using intravascular ultrasound strain elastography. This reconstruction method is especially suited for thin-cap fibroatheromas (TCFAs) ( i.e., plaques with a thin fibrous cap overlaying a lipid pool). Because a strain elastogram of a plaque depends upon the plaque material composition, catheter position within the vessel and measurement noise, this paper investigates how robust the reconstruction is when these parameters are varied. To this end, a standard plaque was defined as the modulus elastogram that was reconstructed from an in vivo measured strain elastogram of a human coronary plaque. This standard plaque was used to computer-simulate different strain elastograms, by varying the 1. geometry and material properties of its plaque components, 2. catheter position and 3. level of added strain noise. Robustness was evaluated by quantifying the correctly reconstructed size, shape and Young’s modulus of each plaque component region and minimal cap thickness. The simulations showed that TCFAs can be adequately reconstructed; the thinner and stiffer the cap or the softer and larger the lipid pool, the better is the reconstruction of these components and minimal cap thickness. Furthermore, reconstructions were 1. independent of catheter position and 2. independent of strain noise. As such, this method has potential to monitor robustly and quantitatively atherosclerosis in vivo. (E-mail: r.baldewsing@erasmusmc.nl)</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>16344126</pmid><doi>10.1016/j.ultrasmedbio.2005.08.006</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-5629
ispartof Ultrasound in medicine & biology, 2005-12, Vol.31 (12), p.1631-1645
issn 0301-5629
1879-291X
language eng
recordid cdi_proquest_miscellaneous_68889638
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Atherosclerosis
Atherosclerosis - diagnostic imaging
Atherosclerosis - pathology
Catheter position
Computer Simulation
Elasticity
Finite Element Analysis
Finite element method
Humans
Intravascular ultrasound elastography
Inverse problem
Models, Cardiovascular
Noise
Robustness
Strain
Tissue characterization
Ultrasonography, Interventional
Vulnerable plaque
Young’s modulus
title Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20reconstructing%20the%20Young%E2%80%99s%20modulus%20distribution%20of%20vulnerable%20atherosclerotic%20plaques%20using%20a%20parametric%20plaque%20model&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Baldewsing,%20Radj%20A.&rft.date=2005-12-01&rft.volume=31&rft.issue=12&rft.spage=1631&rft.epage=1645&rft.pages=1631-1645&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2005.08.006&rft_dat=%3Cproquest_cross%3E68889638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19522444&rft_id=info:pmid/16344126&rft_els_id=S0301562905003194&rfr_iscdi=true