Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls
Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, cata...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2005-12, Vol.139 (4), p.1773-1783 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1783 |
---|---|
container_issue | 4 |
container_start_page | 1773 |
container_title | Plant physiology (Bethesda) |
container_volume | 139 |
creator | Mano, Junichi Belles-Boix, Enric Babiychuk, Elena Inze, Dirk Torii, Yoshimitsu Hiraoka, Eiji Takimoto, Koichi Slooten, Luit Asada, Kozi Kushnir, Sergei |
description | Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the [alpha],[beta]-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the [alpha],[beta]-unsaturated bond of the photoproduced reactive carbonyls. |
doi_str_mv | 10.1104/pp.105.070391 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68885153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4282002</jstor_id><sourcerecordid>4282002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-211cdb8ba868c35d652fc2d9da6b3e7c7b4735defc26b3c7c4092239592fbeae3</originalsourceid><addsrcrecordid>eNpVkk2P0zAQhi0EYsvCkRsCX-CWYjtx4lyQVl0-VqpEBbtna-JMui5pnLXdiv4HfjTuptqFk615n3lnPGNCXnM255wVH8dxzpmcs4rlNX9CZlzmIhOyUE_JjLF0Z0rVZ-RFCBvGGM958Zyc8VLUNa_yGfmz8i6iidYNFNZghxDp6tZF537bFqLdI70aNjt_oK6j164BYxxdIuwx0OZARXbR_8IBevoD252JEHBOLzGmbAP3piltaUfb0hX6oydml-iTbZsywNwXWIBv3HDow0vyrIM-4KvTeU5uvny-XnzLlt-_Xi0ulpmRZR4zwblpG9WAKpXJZVtK0RnR1i2UTY6VqZqiSmFMwRQwlSlYLURey1p0DQLm5-TT5Dvumi22Bofoodejt1vwB-3A6v-Vwd7qtdvrND4mpUoGH04G3t3tMES9tcFg38OAbhd0qZSSaRMJzCbQeBeCx-6hCGf6uD89jukq9bS_xL_9t7NH-rSwBLw_ARAM9J2HwdjwyKWH54IdO3wzcZsQnX_QC6EEYyLJ7ya5A6dh7ZPFzU-RvgdLPRUyze8vVcO5dA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68885153</pqid></control><display><type>article</type><title>Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mano, Junichi ; Belles-Boix, Enric ; Babiychuk, Elena ; Inze, Dirk ; Torii, Yoshimitsu ; Hiraoka, Eiji ; Takimoto, Koichi ; Slooten, Luit ; Asada, Kozi ; Kushnir, Sergei</creator><creatorcontrib>Mano, Junichi ; Belles-Boix, Enric ; Babiychuk, Elena ; Inze, Dirk ; Torii, Yoshimitsu ; Hiraoka, Eiji ; Takimoto, Koichi ; Slooten, Luit ; Asada, Kozi ; Kushnir, Sergei</creatorcontrib><description>Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the [alpha],[beta]-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the [alpha],[beta]-unsaturated bond of the photoproduced reactive carbonyls.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.105.070391</identifier><identifier>PMID: 16299173</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>2-alkenal reductase ; Aldehydes ; Base Sequence ; Biological and medical sciences ; cell nucleus ; Chloroplasts ; cytosol ; DNA, Plant - genetics ; Environmental Stress and Adaptation to Stress ; enzyme substrates ; Enzymes ; Fundamental and applied biological sciences. Psychology ; gene overexpression ; Kinetics ; Leaves ; Lipid Peroxides - metabolism ; Lipids ; metabolic detoxification ; Metabolism ; Molecular Sequence Data ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - radiation effects ; Nicotiana tabacum ; Nitrogen metabolism ; nucleotide sequences ; Oxidative Stress ; oxidoreductases ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; peroxides ; Photobiology ; Photons ; photooxidation ; Plant cells ; Plant Leaves - metabolism ; Plant physiology and development ; Plants ; Plants, Genetically Modified ; Reactive Oxygen Species - metabolism ; Substrate Specificity ; tobacco ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2005-12, Vol.139 (4), p.1773-1783</ispartof><rights>Copyright 2005 American Society of Plant Biologists</rights><rights>2006 INIST-CNRS</rights><rights>Copyright © 2005, American Society of Plant Biologists 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-211cdb8ba868c35d652fc2d9da6b3e7c7b4735defc26b3c7c4092239592fbeae3</citedby><cites>FETCH-LOGICAL-c563t-211cdb8ba868c35d652fc2d9da6b3e7c7b4735defc26b3c7c4092239592fbeae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4282002$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4282002$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17353208$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16299173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mano, Junichi</creatorcontrib><creatorcontrib>Belles-Boix, Enric</creatorcontrib><creatorcontrib>Babiychuk, Elena</creatorcontrib><creatorcontrib>Inze, Dirk</creatorcontrib><creatorcontrib>Torii, Yoshimitsu</creatorcontrib><creatorcontrib>Hiraoka, Eiji</creatorcontrib><creatorcontrib>Takimoto, Koichi</creatorcontrib><creatorcontrib>Slooten, Luit</creatorcontrib><creatorcontrib>Asada, Kozi</creatorcontrib><creatorcontrib>Kushnir, Sergei</creatorcontrib><title>Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the [alpha],[beta]-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the [alpha],[beta]-unsaturated bond of the photoproduced reactive carbonyls.</description><subject>2-alkenal reductase</subject><subject>Aldehydes</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>cell nucleus</subject><subject>Chloroplasts</subject><subject>cytosol</subject><subject>DNA, Plant - genetics</subject><subject>Environmental Stress and Adaptation to Stress</subject><subject>enzyme substrates</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene overexpression</subject><subject>Kinetics</subject><subject>Leaves</subject><subject>Lipid Peroxides - metabolism</subject><subject>Lipids</subject><subject>metabolic detoxification</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - radiation effects</subject><subject>Nicotiana tabacum</subject><subject>Nitrogen metabolism</subject><subject>nucleotide sequences</subject><subject>Oxidative Stress</subject><subject>oxidoreductases</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>peroxides</subject><subject>Photobiology</subject><subject>Photons</subject><subject>photooxidation</subject><subject>Plant cells</subject><subject>Plant Leaves - metabolism</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Substrate Specificity</subject><subject>tobacco</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkk2P0zAQhi0EYsvCkRsCX-CWYjtx4lyQVl0-VqpEBbtna-JMui5pnLXdiv4HfjTuptqFk615n3lnPGNCXnM255wVH8dxzpmcs4rlNX9CZlzmIhOyUE_JjLF0Z0rVZ-RFCBvGGM958Zyc8VLUNa_yGfmz8i6iidYNFNZghxDp6tZF537bFqLdI70aNjt_oK6j164BYxxdIuwx0OZARXbR_8IBevoD252JEHBOLzGmbAP3piltaUfb0hX6oydml-iTbZsywNwXWIBv3HDow0vyrIM-4KvTeU5uvny-XnzLlt-_Xi0ulpmRZR4zwblpG9WAKpXJZVtK0RnR1i2UTY6VqZqiSmFMwRQwlSlYLURey1p0DQLm5-TT5Dvumi22Bofoodejt1vwB-3A6v-Vwd7qtdvrND4mpUoGH04G3t3tMES9tcFg38OAbhd0qZSSaRMJzCbQeBeCx-6hCGf6uD89jukq9bS_xL_9t7NH-rSwBLw_ARAM9J2HwdjwyKWH54IdO3wzcZsQnX_QC6EEYyLJ7ya5A6dh7ZPFzU-RvgdLPRUyze8vVcO5dA</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Mano, Junichi</creator><creator>Belles-Boix, Enric</creator><creator>Babiychuk, Elena</creator><creator>Inze, Dirk</creator><creator>Torii, Yoshimitsu</creator><creator>Hiraoka, Eiji</creator><creator>Takimoto, Koichi</creator><creator>Slooten, Luit</creator><creator>Asada, Kozi</creator><creator>Kushnir, Sergei</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051201</creationdate><title>Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls</title><author>Mano, Junichi ; Belles-Boix, Enric ; Babiychuk, Elena ; Inze, Dirk ; Torii, Yoshimitsu ; Hiraoka, Eiji ; Takimoto, Koichi ; Slooten, Luit ; Asada, Kozi ; Kushnir, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-211cdb8ba868c35d652fc2d9da6b3e7c7b4735defc26b3c7c4092239592fbeae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>2-alkenal reductase</topic><topic>Aldehydes</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>cell nucleus</topic><topic>Chloroplasts</topic><topic>cytosol</topic><topic>DNA, Plant - genetics</topic><topic>Environmental Stress and Adaptation to Stress</topic><topic>enzyme substrates</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene overexpression</topic><topic>Kinetics</topic><topic>Leaves</topic><topic>Lipid Peroxides - metabolism</topic><topic>Lipids</topic><topic>metabolic detoxification</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - radiation effects</topic><topic>Nicotiana tabacum</topic><topic>Nitrogen metabolism</topic><topic>nucleotide sequences</topic><topic>Oxidative Stress</topic><topic>oxidoreductases</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>peroxides</topic><topic>Photobiology</topic><topic>Photons</topic><topic>photooxidation</topic><topic>Plant cells</topic><topic>Plant Leaves - metabolism</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Substrate Specificity</topic><topic>tobacco</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mano, Junichi</creatorcontrib><creatorcontrib>Belles-Boix, Enric</creatorcontrib><creatorcontrib>Babiychuk, Elena</creatorcontrib><creatorcontrib>Inze, Dirk</creatorcontrib><creatorcontrib>Torii, Yoshimitsu</creatorcontrib><creatorcontrib>Hiraoka, Eiji</creatorcontrib><creatorcontrib>Takimoto, Koichi</creatorcontrib><creatorcontrib>Slooten, Luit</creatorcontrib><creatorcontrib>Asada, Kozi</creatorcontrib><creatorcontrib>Kushnir, Sergei</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mano, Junichi</au><au>Belles-Boix, Enric</au><au>Babiychuk, Elena</au><au>Inze, Dirk</au><au>Torii, Yoshimitsu</au><au>Hiraoka, Eiji</au><au>Takimoto, Koichi</au><au>Slooten, Luit</au><au>Asada, Kozi</au><au>Kushnir, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>139</volume><issue>4</issue><spage>1773</spage><epage>1783</epage><pages>1773-1783</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the [alpha],[beta]-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the [alpha],[beta]-unsaturated bond of the photoproduced reactive carbonyls.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>16299173</pmid><doi>10.1104/pp.105.070391</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2005-12, Vol.139 (4), p.1773-1783 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_68885153 |
source | MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | 2-alkenal reductase Aldehydes Base Sequence Biological and medical sciences cell nucleus Chloroplasts cytosol DNA, Plant - genetics Environmental Stress and Adaptation to Stress enzyme substrates Enzymes Fundamental and applied biological sciences. Psychology gene overexpression Kinetics Leaves Lipid Peroxides - metabolism Lipids metabolic detoxification Metabolism Molecular Sequence Data Nicotiana - genetics Nicotiana - metabolism Nicotiana - radiation effects Nicotiana tabacum Nitrogen metabolism nucleotide sequences Oxidative Stress oxidoreductases Oxidoreductases - genetics Oxidoreductases - metabolism peroxides Photobiology Photons photooxidation Plant cells Plant Leaves - metabolism Plant physiology and development Plants Plants, Genetically Modified Reactive Oxygen Species - metabolism Substrate Specificity tobacco Transgenic plants |
title | Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protection%20against%20Photooxidative%20Injury%20of%20Tobacco%20Leaves%20by%202-Alkenal%20Reductase.%20Detoxication%20of%20Lipid%20Peroxide-Derived%20Reactive%20Carbonyls&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Mano,%20Junichi&rft.date=2005-12-01&rft.volume=139&rft.issue=4&rft.spage=1773&rft.epage=1783&rft.pages=1773-1783&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.105.070391&rft_dat=%3Cjstor_pubme%3E4282002%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68885153&rft_id=info:pmid/16299173&rft_jstor_id=4282002&rfr_iscdi=true |