Structure and Architecture of the Maize Genome

Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2005-12, Vol.139 (4), p.1612-1624
Hauptverfasser: Haberer, Georg, Young, Sarah, Bharti, Arvind K, Gundlach, Heidrun, Raymond, Christina, Fuks, Galina, Butler, Ed, Wing, Rod A, Rounsley, Steve, Birren, Bruce, Nusbaum, Chad, Mayer, Klaus F.X, Messing, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1624
container_issue 4
container_start_page 1612
container_title Plant physiology (Bethesda)
container_volume 139
creator Haberer, Georg
Young, Sarah
Bharti, Arvind K
Gundlach, Heidrun
Raymond, Christina
Fuks, Galina
Butler, Ed
Wing, Rod A
Rounsley, Steve
Birren, Bruce
Nusbaum, Chad
Mayer, Klaus F.X
Messing, Joachim
description Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%-63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes.
doi_str_mv 10.1104/pp.105.068718
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68884360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281990</jstor_id><sourcerecordid>4281990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-8cedf4a3eafa44aba66ad88267c11055a36dc1ad28b7e8403119c262eb7b8dca3</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0EoqUwsiHIAluCv2I7Y1VBQSpiKJ2ji-PQVEkT7GSAvx6XRDAy3dPdT09P7xC6JDgiBPP7to0IjiMslCTqCE1JzGhIY66O0RRjr7FSyQSdObfDGBNG-CmaEMFYorCcomjd2V53vTUB7PNgbvW27MywaIqg25rgBcovEyzNvqnNOTopoHLmYpwztHl8eFs8havX5fNivgo1l6wLlTZ5wYEZKIBzyEAIyJWiQmofOo6BiVwTyKnKpFEcM0ISTQU1mcxUroHN0N3g29rmozeuS-vSaVNVsDdN71KhlOJM4H9BIjnl_AcMB1DbxjlrirS1ZQ32MyU4PTSZtq2XcTo06fnr0bjPapP_0WN1HrgdAXAaqsLCXpfuj5MsZiQRnrsauJ3rGvt751SRJDnkuhnOBTQpvFtvsVlT_yjsM_HYm3wDe4OMqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17424460</pqid></control><display><type>article</type><title>Structure and Architecture of the Maize Genome</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Haberer, Georg ; Young, Sarah ; Bharti, Arvind K ; Gundlach, Heidrun ; Raymond, Christina ; Fuks, Galina ; Butler, Ed ; Wing, Rod A ; Rounsley, Steve ; Birren, Bruce ; Nusbaum, Chad ; Mayer, Klaus F.X ; Messing, Joachim</creator><creatorcontrib>Haberer, Georg ; Young, Sarah ; Bharti, Arvind K ; Gundlach, Heidrun ; Raymond, Christina ; Fuks, Galina ; Butler, Ed ; Wing, Rod A ; Rounsley, Steve ; Birren, Bruce ; Nusbaum, Chad ; Mayer, Klaus F.X ; Messing, Joachim</creatorcontrib><description>Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%-63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.105.068718</identifier><identifier>PMID: 16339807</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Arabidopsis thaliana ; bacterial artificial chromosomes ; Base Composition ; Bioinformatics ; Biological and medical sciences ; Chromosomes, Artificial, Bacterial - genetics ; Codon - genetics ; Corn ; Datasets ; DNA ; DNA, Plant - chemistry ; DNA, Plant - genetics ; Exons ; expressed sequence tags ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Library ; Genes ; Genes, Plant ; Genes. Genome ; genome ; Genome, Plant ; Genomes ; Genomics ; Introns ; Molecular and cellular biology ; Molecular genetics ; Multigene Family ; Oryza sativa ; plant genetics ; Repetitive Sequences, Nucleic Acid ; Rice ; sequence analysis ; Sequencing ; Zea mays ; Zea mays - genetics</subject><ispartof>Plant physiology (Bethesda), 2005-12, Vol.139 (4), p.1612-1624</ispartof><rights>Copyright 2005 American Society of Plant Biologists</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-8cedf4a3eafa44aba66ad88267c11055a36dc1ad28b7e8403119c262eb7b8dca3</citedby><cites>FETCH-LOGICAL-c473t-8cedf4a3eafa44aba66ad88267c11055a36dc1ad28b7e8403119c262eb7b8dca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281990$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281990$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17353196$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16339807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haberer, Georg</creatorcontrib><creatorcontrib>Young, Sarah</creatorcontrib><creatorcontrib>Bharti, Arvind K</creatorcontrib><creatorcontrib>Gundlach, Heidrun</creatorcontrib><creatorcontrib>Raymond, Christina</creatorcontrib><creatorcontrib>Fuks, Galina</creatorcontrib><creatorcontrib>Butler, Ed</creatorcontrib><creatorcontrib>Wing, Rod A</creatorcontrib><creatorcontrib>Rounsley, Steve</creatorcontrib><creatorcontrib>Birren, Bruce</creatorcontrib><creatorcontrib>Nusbaum, Chad</creatorcontrib><creatorcontrib>Mayer, Klaus F.X</creatorcontrib><creatorcontrib>Messing, Joachim</creatorcontrib><title>Structure and Architecture of the Maize Genome</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%-63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes.</description><subject>Arabidopsis thaliana</subject><subject>bacterial artificial chromosomes</subject><subject>Base Composition</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Codon - genetics</subject><subject>Corn</subject><subject>Datasets</subject><subject>DNA</subject><subject>DNA, Plant - chemistry</subject><subject>DNA, Plant - genetics</subject><subject>Exons</subject><subject>expressed sequence tags</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Library</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genes. Genome</subject><subject>genome</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Introns</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Multigene Family</subject><subject>Oryza sativa</subject><subject>plant genetics</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Rice</subject><subject>sequence analysis</subject><subject>Sequencing</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1PwzAQxS0EoqUwsiHIAluCv2I7Y1VBQSpiKJ2ji-PQVEkT7GSAvx6XRDAy3dPdT09P7xC6JDgiBPP7to0IjiMslCTqCE1JzGhIY66O0RRjr7FSyQSdObfDGBNG-CmaEMFYorCcomjd2V53vTUB7PNgbvW27MywaIqg25rgBcovEyzNvqnNOTopoHLmYpwztHl8eFs8havX5fNivgo1l6wLlTZ5wYEZKIBzyEAIyJWiQmofOo6BiVwTyKnKpFEcM0ISTQU1mcxUroHN0N3g29rmozeuS-vSaVNVsDdN71KhlOJM4H9BIjnl_AcMB1DbxjlrirS1ZQ32MyU4PTSZtq2XcTo06fnr0bjPapP_0WN1HrgdAXAaqsLCXpfuj5MsZiQRnrsauJ3rGvt751SRJDnkuhnOBTQpvFtvsVlT_yjsM_HYm3wDe4OMqg</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Haberer, Georg</creator><creator>Young, Sarah</creator><creator>Bharti, Arvind K</creator><creator>Gundlach, Heidrun</creator><creator>Raymond, Christina</creator><creator>Fuks, Galina</creator><creator>Butler, Ed</creator><creator>Wing, Rod A</creator><creator>Rounsley, Steve</creator><creator>Birren, Bruce</creator><creator>Nusbaum, Chad</creator><creator>Mayer, Klaus F.X</creator><creator>Messing, Joachim</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>Structure and Architecture of the Maize Genome</title><author>Haberer, Georg ; Young, Sarah ; Bharti, Arvind K ; Gundlach, Heidrun ; Raymond, Christina ; Fuks, Galina ; Butler, Ed ; Wing, Rod A ; Rounsley, Steve ; Birren, Bruce ; Nusbaum, Chad ; Mayer, Klaus F.X ; Messing, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-8cedf4a3eafa44aba66ad88267c11055a36dc1ad28b7e8403119c262eb7b8dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Arabidopsis thaliana</topic><topic>bacterial artificial chromosomes</topic><topic>Base Composition</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Codon - genetics</topic><topic>Corn</topic><topic>Datasets</topic><topic>DNA</topic><topic>DNA, Plant - chemistry</topic><topic>DNA, Plant - genetics</topic><topic>Exons</topic><topic>expressed sequence tags</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Library</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genes. Genome</topic><topic>genome</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Introns</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Multigene Family</topic><topic>Oryza sativa</topic><topic>plant genetics</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Rice</topic><topic>sequence analysis</topic><topic>Sequencing</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haberer, Georg</creatorcontrib><creatorcontrib>Young, Sarah</creatorcontrib><creatorcontrib>Bharti, Arvind K</creatorcontrib><creatorcontrib>Gundlach, Heidrun</creatorcontrib><creatorcontrib>Raymond, Christina</creatorcontrib><creatorcontrib>Fuks, Galina</creatorcontrib><creatorcontrib>Butler, Ed</creatorcontrib><creatorcontrib>Wing, Rod A</creatorcontrib><creatorcontrib>Rounsley, Steve</creatorcontrib><creatorcontrib>Birren, Bruce</creatorcontrib><creatorcontrib>Nusbaum, Chad</creatorcontrib><creatorcontrib>Mayer, Klaus F.X</creatorcontrib><creatorcontrib>Messing, Joachim</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haberer, Georg</au><au>Young, Sarah</au><au>Bharti, Arvind K</au><au>Gundlach, Heidrun</au><au>Raymond, Christina</au><au>Fuks, Galina</au><au>Butler, Ed</au><au>Wing, Rod A</au><au>Rounsley, Steve</au><au>Birren, Bruce</au><au>Nusbaum, Chad</au><au>Mayer, Klaus F.X</au><au>Messing, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Architecture of the Maize Genome</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>139</volume><issue>4</issue><spage>1612</spage><epage>1624</epage><pages>1612-1624</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Maize (Zea mays or corn) plays many varied and important roles in society. It is not only an important experimental model plant, but also a major livestock feed crop and a significant source of industrial products such as sweeteners and ethanol. In this study we report the systematic analysis of contiguous sequences of the maize genome. We selected 100 random regions averaging 144 kb in size, representing about 0.6% of the genome, and generated a high-quality dataset for sequence analysis. This sampling contains 330 annotated genes, 91% of which are supported by expressed sequence tag data from maize and other cereal species. Genes averaged 4 kb in size with five exons, although the largest was over 59 kb with 31 exons. Gene density varied over a wide range from 0.5 to 10.7 genes per 100 kb and genes did not appear to cluster significantly. The total repetitive element content we observed (66%) was slightly higher than previous whole-genome estimates (58%-63%) and consisted almost exclusively of retroelements. The vast majority of genes can be aligned to at least one sequence read derived from gene-enrichment procedures, but only about 30% are fully covered. Our results indicate that much of the increase in genome size of maize relative to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) is attributable to an increase in number of both repetitive elements and genes.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>16339807</pmid><doi>10.1104/pp.105.068718</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2005-12, Vol.139 (4), p.1612-1624
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_68884360
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis thaliana
bacterial artificial chromosomes
Base Composition
Bioinformatics
Biological and medical sciences
Chromosomes, Artificial, Bacterial - genetics
Codon - genetics
Corn
Datasets
DNA
DNA, Plant - chemistry
DNA, Plant - genetics
Exons
expressed sequence tags
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Library
Genes
Genes, Plant
Genes. Genome
genome
Genome, Plant
Genomes
Genomics
Introns
Molecular and cellular biology
Molecular genetics
Multigene Family
Oryza sativa
plant genetics
Repetitive Sequences, Nucleic Acid
Rice
sequence analysis
Sequencing
Zea mays
Zea mays - genetics
title Structure and Architecture of the Maize Genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Architecture%20of%20the%20Maize%20Genome&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Haberer,%20Georg&rft.date=2005-12-01&rft.volume=139&rft.issue=4&rft.spage=1612&rft.epage=1624&rft.pages=1612-1624&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.105.068718&rft_dat=%3Cjstor_proqu%3E4281990%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17424460&rft_id=info:pmid/16339807&rft_jstor_id=4281990&rfr_iscdi=true