The Structural Context of Disease-causing Mutations in Gap Junctions

Gap junctions form intercellular channels that mediate metabolic and electrical signaling between neighboring cells in a tissue. Lack of an atomic resolution structure of the gap junction has made it difficult to identify interactions that stabilize its transmembrane domain. Using a recently compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-09, Vol.281 (39), p.28958-28963
Hauptverfasser: Fleishman, Sarel J., Sabag, Adi D., Ophir, Eran, Avraham, Karen B., Ben-Tal, Nir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28963
container_issue 39
container_start_page 28958
container_title The Journal of biological chemistry
container_volume 281
creator Fleishman, Sarel J.
Sabag, Adi D.
Ophir, Eran
Avraham, Karen B.
Ben-Tal, Nir
description Gap junctions form intercellular channels that mediate metabolic and electrical signaling between neighboring cells in a tissue. Lack of an atomic resolution structure of the gap junction has made it difficult to identify interactions that stabilize its transmembrane domain. Using a recently computed model of this domain, which specifies the locations of each amino acid, we postulated the existence of several interactions and tested them experimentally. We introduced mutations within the transmembrane domain of the gap junction-forming protein connexin that were previously implicated in genetic diseases and that apparently destabilized the gap junction, as evidenced here by the absence of the protein from the sites of cell-cell apposition. The model structure helped identify positions on adjacent helices where second-site mutations restored membrane localization, revealing possible interactions between residue pairs. We thus identified two putative salt bridges and one pair involved in packing interactions in which one disease-causing mutation suppressed the effects of another. These results seem to reveal some of the physical forces that underlie the structural stability of the gap junction transmembrane domain and suggest that abrogation of such interactions bring about some of the effects of disease-causing mutations.
doi_str_mv 10.1074/jbc.M605764200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68877237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819339882</els_id><sourcerecordid>68877237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-9c0aa3f7f8af373650f546d6fc178afcbae2f8509c4eab34e80935d0e0d3c7233</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgei2cOUIOVS9ZRnHH7GPaEsLVSsObSVuluOMd13txoud8PHva8hKPVX4MtLomVfWS8g7CksKLf_40LnljQTRSt4AvCALCorVTNDvL8kCoKG1boQ6Isc5P0B5XNPX5IhKJblo2YKc322wuh3T5MYp2W21isOIv8cq-uo8ZLQZa2enHIZ1dTONdgxxyFUYqku7r66mwf1bvCGvvN1mfHuYJ-T-4vPd6kt9_e3y6-rTde24lGOtHVjLfOuV9axlUoAXXPbSO9qWlessNl4J0I6j7RhHBZqJHhB65tqGsRNyNufuU_wxYR7NLmSH260dME7ZSKXa4tr_QqqZ5ErwApczdCnmnNCbfQo7m_4YCuZvwaYUbJ4KLgfvD8lTt8P-iR8aLeB0Bpuw3vwKCU0XotvgzjSKGqbL0EIV9mFm3kZj1ylkc3_bAGVAKQgNogg1CyyN_gyYTHYBB4d9CXWj6WN47pOPAQueAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19364854</pqid></control><display><type>article</type><title>The Structural Context of Disease-causing Mutations in Gap Junctions</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fleishman, Sarel J. ; Sabag, Adi D. ; Ophir, Eran ; Avraham, Karen B. ; Ben-Tal, Nir</creator><creatorcontrib>Fleishman, Sarel J. ; Sabag, Adi D. ; Ophir, Eran ; Avraham, Karen B. ; Ben-Tal, Nir</creatorcontrib><description>Gap junctions form intercellular channels that mediate metabolic and electrical signaling between neighboring cells in a tissue. Lack of an atomic resolution structure of the gap junction has made it difficult to identify interactions that stabilize its transmembrane domain. Using a recently computed model of this domain, which specifies the locations of each amino acid, we postulated the existence of several interactions and tested them experimentally. We introduced mutations within the transmembrane domain of the gap junction-forming protein connexin that were previously implicated in genetic diseases and that apparently destabilized the gap junction, as evidenced here by the absence of the protein from the sites of cell-cell apposition. The model structure helped identify positions on adjacent helices where second-site mutations restored membrane localization, revealing possible interactions between residue pairs. We thus identified two putative salt bridges and one pair involved in packing interactions in which one disease-causing mutation suppressed the effects of another. These results seem to reveal some of the physical forces that underlie the structural stability of the gap junction transmembrane domain and suggest that abrogation of such interactions bring about some of the effects of disease-causing mutations.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M605764200</identifier><identifier>PMID: 16864573</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Communication ; Connexin 26 ; Connexins - genetics ; Gap Junction beta-1 Protein ; Gap Junctions ; HeLa Cells ; Humans ; Models, Molecular ; Molecular Conformation ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; Signal Transduction ; Transfection</subject><ispartof>The Journal of biological chemistry, 2006-09, Vol.281 (39), p.28958-28963</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-9c0aa3f7f8af373650f546d6fc178afcbae2f8509c4eab34e80935d0e0d3c7233</citedby><cites>FETCH-LOGICAL-c466t-9c0aa3f7f8af373650f546d6fc178afcbae2f8509c4eab34e80935d0e0d3c7233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16864573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><creatorcontrib>Sabag, Adi D.</creatorcontrib><creatorcontrib>Ophir, Eran</creatorcontrib><creatorcontrib>Avraham, Karen B.</creatorcontrib><creatorcontrib>Ben-Tal, Nir</creatorcontrib><title>The Structural Context of Disease-causing Mutations in Gap Junctions</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Gap junctions form intercellular channels that mediate metabolic and electrical signaling between neighboring cells in a tissue. Lack of an atomic resolution structure of the gap junction has made it difficult to identify interactions that stabilize its transmembrane domain. Using a recently computed model of this domain, which specifies the locations of each amino acid, we postulated the existence of several interactions and tested them experimentally. We introduced mutations within the transmembrane domain of the gap junction-forming protein connexin that were previously implicated in genetic diseases and that apparently destabilized the gap junction, as evidenced here by the absence of the protein from the sites of cell-cell apposition. The model structure helped identify positions on adjacent helices where second-site mutations restored membrane localization, revealing possible interactions between residue pairs. We thus identified two putative salt bridges and one pair involved in packing interactions in which one disease-causing mutation suppressed the effects of another. These results seem to reveal some of the physical forces that underlie the structural stability of the gap junction transmembrane domain and suggest that abrogation of such interactions bring about some of the effects of disease-causing mutations.</description><subject>Cell Communication</subject><subject>Connexin 26</subject><subject>Connexins - genetics</subject><subject>Gap Junction beta-1 Protein</subject><subject>Gap Junctions</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Signal Transduction</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQBmALgei2cOUIOVS9ZRnHH7GPaEsLVSsObSVuluOMd13txoud8PHva8hKPVX4MtLomVfWS8g7CksKLf_40LnljQTRSt4AvCALCorVTNDvL8kCoKG1boQ6Isc5P0B5XNPX5IhKJblo2YKc322wuh3T5MYp2W21isOIv8cq-uo8ZLQZa2enHIZ1dTONdgxxyFUYqku7r66mwf1bvCGvvN1mfHuYJ-T-4vPd6kt9_e3y6-rTde24lGOtHVjLfOuV9axlUoAXXPbSO9qWlessNl4J0I6j7RhHBZqJHhB65tqGsRNyNufuU_wxYR7NLmSH260dME7ZSKXa4tr_QqqZ5ErwApczdCnmnNCbfQo7m_4YCuZvwaYUbJ4KLgfvD8lTt8P-iR8aLeB0Bpuw3vwKCU0XotvgzjSKGqbL0EIV9mFm3kZj1ylkc3_bAGVAKQgNogg1CyyN_gyYTHYBB4d9CXWj6WN47pOPAQueAA</recordid><startdate>20060929</startdate><enddate>20060929</enddate><creator>Fleishman, Sarel J.</creator><creator>Sabag, Adi D.</creator><creator>Ophir, Eran</creator><creator>Avraham, Karen B.</creator><creator>Ben-Tal, Nir</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060929</creationdate><title>The Structural Context of Disease-causing Mutations in Gap Junctions</title><author>Fleishman, Sarel J. ; Sabag, Adi D. ; Ophir, Eran ; Avraham, Karen B. ; Ben-Tal, Nir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-9c0aa3f7f8af373650f546d6fc178afcbae2f8509c4eab34e80935d0e0d3c7233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cell Communication</topic><topic>Connexin 26</topic><topic>Connexins - genetics</topic><topic>Gap Junction beta-1 Protein</topic><topic>Gap Junctions</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Signal Transduction</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleishman, Sarel J.</creatorcontrib><creatorcontrib>Sabag, Adi D.</creatorcontrib><creatorcontrib>Ophir, Eran</creatorcontrib><creatorcontrib>Avraham, Karen B.</creatorcontrib><creatorcontrib>Ben-Tal, Nir</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleishman, Sarel J.</au><au>Sabag, Adi D.</au><au>Ophir, Eran</au><au>Avraham, Karen B.</au><au>Ben-Tal, Nir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structural Context of Disease-causing Mutations in Gap Junctions</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-09-29</date><risdate>2006</risdate><volume>281</volume><issue>39</issue><spage>28958</spage><epage>28963</epage><pages>28958-28963</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Gap junctions form intercellular channels that mediate metabolic and electrical signaling between neighboring cells in a tissue. Lack of an atomic resolution structure of the gap junction has made it difficult to identify interactions that stabilize its transmembrane domain. Using a recently computed model of this domain, which specifies the locations of each amino acid, we postulated the existence of several interactions and tested them experimentally. We introduced mutations within the transmembrane domain of the gap junction-forming protein connexin that were previously implicated in genetic diseases and that apparently destabilized the gap junction, as evidenced here by the absence of the protein from the sites of cell-cell apposition. The model structure helped identify positions on adjacent helices where second-site mutations restored membrane localization, revealing possible interactions between residue pairs. We thus identified two putative salt bridges and one pair involved in packing interactions in which one disease-causing mutation suppressed the effects of another. These results seem to reveal some of the physical forces that underlie the structural stability of the gap junction transmembrane domain and suggest that abrogation of such interactions bring about some of the effects of disease-causing mutations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16864573</pmid><doi>10.1074/jbc.M605764200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2006-09, Vol.281 (39), p.28958-28963
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_68877237
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Cell Communication
Connexin 26
Connexins - genetics
Gap Junction beta-1 Protein
Gap Junctions
HeLa Cells
Humans
Models, Molecular
Molecular Conformation
Mutation
Protein Conformation
Protein Structure, Tertiary
Signal Transduction
Transfection
title The Structural Context of Disease-causing Mutations in Gap Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structural%20Context%20of%20Disease-causing%20Mutations%20in%20Gap%20Junctions&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Fleishman,%20Sarel%20J.&rft.date=2006-09-29&rft.volume=281&rft.issue=39&rft.spage=28958&rft.epage=28963&rft.pages=28958-28963&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M605764200&rft_dat=%3Cproquest_cross%3E68877237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19364854&rft_id=info:pmid/16864573&rft_els_id=S0021925819339882&rfr_iscdi=true