morphology of excitatory central synapses: from structure to function

Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2006-11, Vol.326 (2), p.221-237
Hauptverfasser: Rollenhagen, Astrid, Lübke, Joachim H. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 221
container_title Cell and tissue research
container_volume 326
creator Rollenhagen, Astrid
Lübke, Joachim H. R
description Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for synaptic transmission is important. In particular, realistic values of the number, distribution, and geometry of synaptic contacts and the organization of the pool of synaptic vesicles provide important constraints for realistic models and numerical simulations of those parameters of synaptic transmission that, at present, are still not accessible to experiment. Although all synapses are composed of almost the same structural elements, the composition of these elements within a given synapse and the microcircuit in which they are embedded are the deciding factors determining its function. One possible way to analyze these structures is by computer-assisted three-dimensional reconstructions of synapses and their subsequent quantitative analysis based on ultrathin serial sections. The present review summarizes and discusses the morphology of five central excitatory synapses that are quantitatively well described: (1) a giant synapse, the so-called Calyx of Held, in the medial nucleus of the trapezoid body in the auditory brain stem, (2) the mossy fiber terminal establishing synapses with multiple cerebellar granule cell dendrites, (3) the mossy fiber bouton in the hippocampus predominantly terminating on proximal dendrites of CA3 pyramidal neurons, (4) the climbing fiber-Purkinje cell synapse in the cerebellum, and (5) cortical input synapses on the basal dendrites of layer 5 pyramidal cells. The detailed morphological description of these synaptic structures may help to define the morphological correlates of the functional parameters of synaptic transmission, such as the readily releasable pool of synaptic vesicles, of release, and of the variability of quantal size and might therefore explain the existing differences in the function between individual synapses embedded in different microcircuits.
doi_str_mv 10.1007/s00441-006-0288-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68876635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1135647801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b17546e983391a08955206cdbc0fa2371e7bbe64902f7044cca17a66ee5eaa2a3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj5-gBstLtxV703aJHUn4gsGXKjgLqSZdKy0zZik4MyvNzIDghtXd_OdA-d-hBwjXCCAuAwARYE5AM-BSpmvtsgEC0ZzkEJukwkwoLng_G2P7IfwAYAF59Uu2UNeMVoxPiG3vfOLd9e5-TJzTWa_TBt1dH6ZGTtEr7ssLAe9CDZcZY13fRaiH00cvc2iy5pxMLF1wyHZaXQX7NHmHpDXu9uXm4d8-nT_eHM9zU1RiJjXKMqC20oyVqEGWZUlBW5mtYFGUybQirq2vKiANiJNM0aj0JxbW1qtqWYH5Hzdu_Duc7Qhqr4NxnadHqwbg-JSprms_BfENB5RyASe_QE_3OiHNEJRZKIsETFBuIaMdyF426iFb3vtlwpB_ZhQaxMqmVA_JtQqZU42xWPd29lvYvP6BJyugUY7pee-Der1mQKWAJRylohvzPqNOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213755111</pqid></control><display><type>article</type><title>morphology of excitatory central synapses: from structure to function</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Rollenhagen, Astrid ; Lübke, Joachim H. R</creator><creatorcontrib>Rollenhagen, Astrid ; Lübke, Joachim H. R</creatorcontrib><description>Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for synaptic transmission is important. In particular, realistic values of the number, distribution, and geometry of synaptic contacts and the organization of the pool of synaptic vesicles provide important constraints for realistic models and numerical simulations of those parameters of synaptic transmission that, at present, are still not accessible to experiment. Although all synapses are composed of almost the same structural elements, the composition of these elements within a given synapse and the microcircuit in which they are embedded are the deciding factors determining its function. One possible way to analyze these structures is by computer-assisted three-dimensional reconstructions of synapses and their subsequent quantitative analysis based on ultrathin serial sections. The present review summarizes and discusses the morphology of five central excitatory synapses that are quantitatively well described: (1) a giant synapse, the so-called Calyx of Held, in the medial nucleus of the trapezoid body in the auditory brain stem, (2) the mossy fiber terminal establishing synapses with multiple cerebellar granule cell dendrites, (3) the mossy fiber bouton in the hippocampus predominantly terminating on proximal dendrites of CA3 pyramidal neurons, (4) the climbing fiber-Purkinje cell synapse in the cerebellum, and (5) cortical input synapses on the basal dendrites of layer 5 pyramidal cells. The detailed morphological description of these synaptic structures may help to define the morphological correlates of the functional parameters of synaptic transmission, such as the readily releasable pool of synaptic vesicles, of release, and of the variability of quantal size and might therefore explain the existing differences in the function between individual synapses embedded in different microcircuits.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-006-0288-z</identifier><identifier>PMID: 16932936</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><subject>Animals ; Auditory Pathways - physiology ; Auditory Pathways - ultrastructure ; Brain ; brain stem ; calyx ; Cellular biology ; cerebellum ; dendrites ; hippocampus ; Humans ; Imaging, Three-Dimensional ; mathematical models ; Models, Neurological ; Neuronal Plasticity - physiology ; Neurons ; Neurotransmitter Agents - physiology ; quantitative analysis ; Signal transduction ; synapse ; Synaptic Membranes - physiology ; Synaptic Membranes - ultrastructure ; synaptic transmission ; Synaptic Transmission - physiology ; Synaptic Vesicles - physiology ; Synaptic Vesicles - ultrastructure</subject><ispartof>Cell and tissue research, 2006-11, Vol.326 (2), p.221-237</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b17546e983391a08955206cdbc0fa2371e7bbe64902f7044cca17a66ee5eaa2a3</citedby><cites>FETCH-LOGICAL-c447t-b17546e983391a08955206cdbc0fa2371e7bbe64902f7044cca17a66ee5eaa2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16932936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rollenhagen, Astrid</creatorcontrib><creatorcontrib>Lübke, Joachim H. R</creatorcontrib><title>morphology of excitatory central synapses: from structure to function</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><description>Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for synaptic transmission is important. In particular, realistic values of the number, distribution, and geometry of synaptic contacts and the organization of the pool of synaptic vesicles provide important constraints for realistic models and numerical simulations of those parameters of synaptic transmission that, at present, are still not accessible to experiment. Although all synapses are composed of almost the same structural elements, the composition of these elements within a given synapse and the microcircuit in which they are embedded are the deciding factors determining its function. One possible way to analyze these structures is by computer-assisted three-dimensional reconstructions of synapses and their subsequent quantitative analysis based on ultrathin serial sections. The present review summarizes and discusses the morphology of five central excitatory synapses that are quantitatively well described: (1) a giant synapse, the so-called Calyx of Held, in the medial nucleus of the trapezoid body in the auditory brain stem, (2) the mossy fiber terminal establishing synapses with multiple cerebellar granule cell dendrites, (3) the mossy fiber bouton in the hippocampus predominantly terminating on proximal dendrites of CA3 pyramidal neurons, (4) the climbing fiber-Purkinje cell synapse in the cerebellum, and (5) cortical input synapses on the basal dendrites of layer 5 pyramidal cells. The detailed morphological description of these synaptic structures may help to define the morphological correlates of the functional parameters of synaptic transmission, such as the readily releasable pool of synaptic vesicles, of release, and of the variability of quantal size and might therefore explain the existing differences in the function between individual synapses embedded in different microcircuits.</description><subject>Animals</subject><subject>Auditory Pathways - physiology</subject><subject>Auditory Pathways - ultrastructure</subject><subject>Brain</subject><subject>brain stem</subject><subject>calyx</subject><subject>Cellular biology</subject><subject>cerebellum</subject><subject>dendrites</subject><subject>hippocampus</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>mathematical models</subject><subject>Models, Neurological</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurotransmitter Agents - physiology</subject><subject>quantitative analysis</subject><subject>Signal transduction</subject><subject>synapse</subject><subject>Synaptic Membranes - physiology</subject><subject>Synaptic Membranes - ultrastructure</subject><subject>synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Vesicles - physiology</subject><subject>Synaptic Vesicles - ultrastructure</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtLxDAUhYMoOj5-gBstLtxV703aJHUn4gsGXKjgLqSZdKy0zZik4MyvNzIDghtXd_OdA-d-hBwjXCCAuAwARYE5AM-BSpmvtsgEC0ZzkEJukwkwoLng_G2P7IfwAYAF59Uu2UNeMVoxPiG3vfOLd9e5-TJzTWa_TBt1dH6ZGTtEr7ssLAe9CDZcZY13fRaiH00cvc2iy5pxMLF1wyHZaXQX7NHmHpDXu9uXm4d8-nT_eHM9zU1RiJjXKMqC20oyVqEGWZUlBW5mtYFGUybQirq2vKiANiJNM0aj0JxbW1qtqWYH5Hzdu_Duc7Qhqr4NxnadHqwbg-JSprms_BfENB5RyASe_QE_3OiHNEJRZKIsETFBuIaMdyF426iFb3vtlwpB_ZhQaxMqmVA_JtQqZU42xWPd29lvYvP6BJyugUY7pee-Der1mQKWAJRylohvzPqNOA</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Rollenhagen, Astrid</creator><creator>Lübke, Joachim H. R</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>morphology of excitatory central synapses: from structure to function</title><author>Rollenhagen, Astrid ; Lübke, Joachim H. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b17546e983391a08955206cdbc0fa2371e7bbe64902f7044cca17a66ee5eaa2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Auditory Pathways - physiology</topic><topic>Auditory Pathways - ultrastructure</topic><topic>Brain</topic><topic>brain stem</topic><topic>calyx</topic><topic>Cellular biology</topic><topic>cerebellum</topic><topic>dendrites</topic><topic>hippocampus</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>mathematical models</topic><topic>Models, Neurological</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurotransmitter Agents - physiology</topic><topic>quantitative analysis</topic><topic>Signal transduction</topic><topic>synapse</topic><topic>Synaptic Membranes - physiology</topic><topic>Synaptic Membranes - ultrastructure</topic><topic>synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Vesicles - physiology</topic><topic>Synaptic Vesicles - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rollenhagen, Astrid</creatorcontrib><creatorcontrib>Lübke, Joachim H. R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rollenhagen, Astrid</au><au>Lübke, Joachim H. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>morphology of excitatory central synapses: from structure to function</atitle><jtitle>Cell and tissue research</jtitle><addtitle>Cell Tissue Res</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>326</volume><issue>2</issue><spage>221</spage><epage>237</epage><pages>221-237</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for synaptic transmission is important. In particular, realistic values of the number, distribution, and geometry of synaptic contacts and the organization of the pool of synaptic vesicles provide important constraints for realistic models and numerical simulations of those parameters of synaptic transmission that, at present, are still not accessible to experiment. Although all synapses are composed of almost the same structural elements, the composition of these elements within a given synapse and the microcircuit in which they are embedded are the deciding factors determining its function. One possible way to analyze these structures is by computer-assisted three-dimensional reconstructions of synapses and their subsequent quantitative analysis based on ultrathin serial sections. The present review summarizes and discusses the morphology of five central excitatory synapses that are quantitatively well described: (1) a giant synapse, the so-called Calyx of Held, in the medial nucleus of the trapezoid body in the auditory brain stem, (2) the mossy fiber terminal establishing synapses with multiple cerebellar granule cell dendrites, (3) the mossy fiber bouton in the hippocampus predominantly terminating on proximal dendrites of CA3 pyramidal neurons, (4) the climbing fiber-Purkinje cell synapse in the cerebellum, and (5) cortical input synapses on the basal dendrites of layer 5 pyramidal cells. The detailed morphological description of these synaptic structures may help to define the morphological correlates of the functional parameters of synaptic transmission, such as the readily releasable pool of synaptic vesicles, of release, and of the variability of quantal size and might therefore explain the existing differences in the function between individual synapses embedded in different microcircuits.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>16932936</pmid><doi>10.1007/s00441-006-0288-z</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 2006-11, Vol.326 (2), p.221-237
issn 0302-766X
1432-0878
language eng
recordid cdi_proquest_miscellaneous_68876635
source MEDLINE; SpringerNature Journals
subjects Animals
Auditory Pathways - physiology
Auditory Pathways - ultrastructure
Brain
brain stem
calyx
Cellular biology
cerebellum
dendrites
hippocampus
Humans
Imaging, Three-Dimensional
mathematical models
Models, Neurological
Neuronal Plasticity - physiology
Neurons
Neurotransmitter Agents - physiology
quantitative analysis
Signal transduction
synapse
Synaptic Membranes - physiology
Synaptic Membranes - ultrastructure
synaptic transmission
Synaptic Transmission - physiology
Synaptic Vesicles - physiology
Synaptic Vesicles - ultrastructure
title morphology of excitatory central synapses: from structure to function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=morphology%20of%20excitatory%20central%20synapses:%20from%20structure%20to%20function&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Rollenhagen,%20Astrid&rft.date=2006-11-01&rft.volume=326&rft.issue=2&rft.spage=221&rft.epage=237&rft.pages=221-237&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-006-0288-z&rft_dat=%3Cproquest_cross%3E1135647801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213755111&rft_id=info:pmid/16932936&rfr_iscdi=true