Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing
Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in chemistry 2005-12, Vol.43 (12), p.999-1007 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1007 |
---|---|
container_issue | 12 |
container_start_page | 999 |
container_title | Magnetic resonance in chemistry |
container_volume | 43 |
creator | Blinov, Kirill A. Larin, Nicolay I. Kvasha, Mikhail P. Moser, Arvin Williams, Antony J. Martin, Gary E. |
description | Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mrc.1674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68873215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68873215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</originalsourceid><addsrcrecordid>eNp1kFtL5DAUgIO46HgBf4HkSXypmzRJ0z7K4A0vy44u61s4k5xKtE3HpKM7_97KFH1aOHDg8PEd-Ag54OyEM5b_bKM94YWWG2TCWaUzqcrHTTJhWlYZVyXfJjspPTPGqkqLLbLNCy4lE_mE4GmAZpV8ohAcxca3PkDvu0C7mkLsfQ22T9SHYZyPaHtquzeIHoJFenc7o2kxHCPQNw90GdKqbbGP3kJDF7GzmJIPT3vkRw1Nwv1x75I_52cP08vs5tfF1fT0JrNCaZm5GqVQhdZYKFvleVU4yZUtAXXu0EnMWa0ANCDPpS1dXaJzYq6R63nNxFzskqO1d3j9usTUm9Yni00DAbtlMkVZapFzNYDHa9DGLqWItVlE30JcGc7MZ1IzJDWfSQf0cHQu5y26b3BsOADZGnj3Da7-KzK3s-koHHmfevz3xUN8MYUWWpm_dxdG6N_X7GHGzL34AGGskUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68873215</pqid></control><display><type>article</type><title>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Blinov, Kirill A. ; Larin, Nicolay I. ; Kvasha, Mikhail P. ; Moser, Arvin ; Williams, Antony J. ; Martin, Gary E.</creator><creatorcontrib>Blinov, Kirill A. ; Larin, Nicolay I. ; Kvasha, Mikhail P. ; Moser, Arvin ; Williams, Antony J. ; Martin, Gary E.</creatorcontrib><description>Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.1674</identifier><identifier>PMID: 16144032</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>carbon-carbon vicinal correlation ; IDR-HSQC-TOCSY ; indirect covariance NMR</subject><ispartof>Magnetic resonance in chemistry, 2005-12, Vol.43 (12), p.999-1007</ispartof><rights>Copyright © 2005 John Wiley & Sons, Ltd.</rights><rights>Copyright (c) 2005 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</citedby><cites>FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrc.1674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrc.1674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16144032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blinov, Kirill A.</creatorcontrib><creatorcontrib>Larin, Nicolay I.</creatorcontrib><creatorcontrib>Kvasha, Mikhail P.</creatorcontrib><creatorcontrib>Moser, Arvin</creatorcontrib><creatorcontrib>Williams, Antony J.</creatorcontrib><creatorcontrib>Martin, Gary E.</creatorcontrib><title>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</title><title>Magnetic resonance in chemistry</title><addtitle>Magn. Reson. Chem</addtitle><description>Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley & Sons, Ltd.</description><subject>carbon-carbon vicinal correlation</subject><subject>IDR-HSQC-TOCSY</subject><subject>indirect covariance NMR</subject><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kFtL5DAUgIO46HgBf4HkSXypmzRJ0z7K4A0vy44u61s4k5xKtE3HpKM7_97KFH1aOHDg8PEd-Ag54OyEM5b_bKM94YWWG2TCWaUzqcrHTTJhWlYZVyXfJjspPTPGqkqLLbLNCy4lE_mE4GmAZpV8ohAcxca3PkDvu0C7mkLsfQ22T9SHYZyPaHtquzeIHoJFenc7o2kxHCPQNw90GdKqbbGP3kJDF7GzmJIPT3vkRw1Nwv1x75I_52cP08vs5tfF1fT0JrNCaZm5GqVQhdZYKFvleVU4yZUtAXXu0EnMWa0ANCDPpS1dXaJzYq6R63nNxFzskqO1d3j9usTUm9Yni00DAbtlMkVZapFzNYDHa9DGLqWItVlE30JcGc7MZ1IzJDWfSQf0cHQu5y26b3BsOADZGnj3Da7-KzK3s-koHHmfevz3xUN8MYUWWpm_dxdG6N_X7GHGzL34AGGskUU</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Blinov, Kirill A.</creator><creator>Larin, Nicolay I.</creator><creator>Kvasha, Mikhail P.</creator><creator>Moser, Arvin</creator><creator>Williams, Antony J.</creator><creator>Martin, Gary E.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</title><author>Blinov, Kirill A. ; Larin, Nicolay I. ; Kvasha, Mikhail P. ; Moser, Arvin ; Williams, Antony J. ; Martin, Gary E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>carbon-carbon vicinal correlation</topic><topic>IDR-HSQC-TOCSY</topic><topic>indirect covariance NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blinov, Kirill A.</creatorcontrib><creatorcontrib>Larin, Nicolay I.</creatorcontrib><creatorcontrib>Kvasha, Mikhail P.</creatorcontrib><creatorcontrib>Moser, Arvin</creatorcontrib><creatorcontrib>Williams, Antony J.</creatorcontrib><creatorcontrib>Martin, Gary E.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blinov, Kirill A.</au><au>Larin, Nicolay I.</au><au>Kvasha, Mikhail P.</au><au>Moser, Arvin</au><au>Williams, Antony J.</au><au>Martin, Gary E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</atitle><jtitle>Magnetic resonance in chemistry</jtitle><addtitle>Magn. Reson. Chem</addtitle><date>2005-12</date><risdate>2005</risdate><volume>43</volume><issue>12</issue><spage>999</spage><epage>1007</epage><pages>999-1007</pages><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>16144032</pmid><doi>10.1002/mrc.1674</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-1581 |
ispartof | Magnetic resonance in chemistry, 2005-12, Vol.43 (12), p.999-1007 |
issn | 0749-1581 1097-458X |
language | eng |
recordid | cdi_proquest_miscellaneous_68873215 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | carbon-carbon vicinal correlation IDR-HSQC-TOCSY indirect covariance NMR |
title | Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20elimination%20of%20artifacts%20in%20indirect%20covariance%20NMR%20spectra%20via%20unsymmetrical%20processing&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Blinov,%20Kirill%20A.&rft.date=2005-12&rft.volume=43&rft.issue=12&rft.spage=999&rft.epage=1007&rft.pages=999-1007&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.1674&rft_dat=%3Cproquest_cross%3E68873215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68873215&rft_id=info:pmid/16144032&rfr_iscdi=true |