Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing

Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry 2005-12, Vol.43 (12), p.999-1007
Hauptverfasser: Blinov, Kirill A., Larin, Nicolay I., Kvasha, Mikhail P., Moser, Arvin, Williams, Antony J., Martin, Gary E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 12
container_start_page 999
container_title Magnetic resonance in chemistry
container_volume 43
creator Blinov, Kirill A.
Larin, Nicolay I.
Kvasha, Mikhail P.
Moser, Arvin
Williams, Antony J.
Martin, Gary E.
description Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mrc.1674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68873215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68873215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</originalsourceid><addsrcrecordid>eNp1kFtL5DAUgIO46HgBf4HkSXypmzRJ0z7K4A0vy44u61s4k5xKtE3HpKM7_97KFH1aOHDg8PEd-Ag54OyEM5b_bKM94YWWG2TCWaUzqcrHTTJhWlYZVyXfJjspPTPGqkqLLbLNCy4lE_mE4GmAZpV8ohAcxca3PkDvu0C7mkLsfQ22T9SHYZyPaHtquzeIHoJFenc7o2kxHCPQNw90GdKqbbGP3kJDF7GzmJIPT3vkRw1Nwv1x75I_52cP08vs5tfF1fT0JrNCaZm5GqVQhdZYKFvleVU4yZUtAXXu0EnMWa0ANCDPpS1dXaJzYq6R63nNxFzskqO1d3j9usTUm9Yni00DAbtlMkVZapFzNYDHa9DGLqWItVlE30JcGc7MZ1IzJDWfSQf0cHQu5y26b3BsOADZGnj3Da7-KzK3s-koHHmfevz3xUN8MYUWWpm_dxdG6N_X7GHGzL34AGGskUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68873215</pqid></control><display><type>article</type><title>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Blinov, Kirill A. ; Larin, Nicolay I. ; Kvasha, Mikhail P. ; Moser, Arvin ; Williams, Antony J. ; Martin, Gary E.</creator><creatorcontrib>Blinov, Kirill A. ; Larin, Nicolay I. ; Kvasha, Mikhail P. ; Moser, Arvin ; Williams, Antony J. ; Martin, Gary E.</creatorcontrib><description>Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.1674</identifier><identifier>PMID: 16144032</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>carbon-carbon vicinal correlation ; IDR-HSQC-TOCSY ; indirect covariance NMR</subject><ispartof>Magnetic resonance in chemistry, 2005-12, Vol.43 (12), p.999-1007</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright (c) 2005 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</citedby><cites>FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrc.1674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrc.1674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16144032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blinov, Kirill A.</creatorcontrib><creatorcontrib>Larin, Nicolay I.</creatorcontrib><creatorcontrib>Kvasha, Mikhail P.</creatorcontrib><creatorcontrib>Moser, Arvin</creatorcontrib><creatorcontrib>Williams, Antony J.</creatorcontrib><creatorcontrib>Martin, Gary E.</creatorcontrib><title>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</title><title>Magnetic resonance in chemistry</title><addtitle>Magn. Reson. Chem</addtitle><description>Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>carbon-carbon vicinal correlation</subject><subject>IDR-HSQC-TOCSY</subject><subject>indirect covariance NMR</subject><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kFtL5DAUgIO46HgBf4HkSXypmzRJ0z7K4A0vy44u61s4k5xKtE3HpKM7_97KFH1aOHDg8PEd-Ag54OyEM5b_bKM94YWWG2TCWaUzqcrHTTJhWlYZVyXfJjspPTPGqkqLLbLNCy4lE_mE4GmAZpV8ohAcxca3PkDvu0C7mkLsfQ22T9SHYZyPaHtquzeIHoJFenc7o2kxHCPQNw90GdKqbbGP3kJDF7GzmJIPT3vkRw1Nwv1x75I_52cP08vs5tfF1fT0JrNCaZm5GqVQhdZYKFvleVU4yZUtAXXu0EnMWa0ANCDPpS1dXaJzYq6R63nNxFzskqO1d3j9usTUm9Yni00DAbtlMkVZapFzNYDHa9DGLqWItVlE30JcGc7MZ1IzJDWfSQf0cHQu5y26b3BsOADZGnj3Da7-KzK3s-koHHmfevz3xUN8MYUWWpm_dxdG6N_X7GHGzL34AGGskUU</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Blinov, Kirill A.</creator><creator>Larin, Nicolay I.</creator><creator>Kvasha, Mikhail P.</creator><creator>Moser, Arvin</creator><creator>Williams, Antony J.</creator><creator>Martin, Gary E.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</title><author>Blinov, Kirill A. ; Larin, Nicolay I. ; Kvasha, Mikhail P. ; Moser, Arvin ; Williams, Antony J. ; Martin, Gary E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-dfe435677e65c92296d415c8ae72ded4e20f5aa7ae124c8df8edd3b7e17bf03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>carbon-carbon vicinal correlation</topic><topic>IDR-HSQC-TOCSY</topic><topic>indirect covariance NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blinov, Kirill A.</creatorcontrib><creatorcontrib>Larin, Nicolay I.</creatorcontrib><creatorcontrib>Kvasha, Mikhail P.</creatorcontrib><creatorcontrib>Moser, Arvin</creatorcontrib><creatorcontrib>Williams, Antony J.</creatorcontrib><creatorcontrib>Martin, Gary E.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blinov, Kirill A.</au><au>Larin, Nicolay I.</au><au>Kvasha, Mikhail P.</au><au>Moser, Arvin</au><au>Williams, Antony J.</au><au>Martin, Gary E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing</atitle><jtitle>Magnetic resonance in chemistry</jtitle><addtitle>Magn. Reson. Chem</addtitle><date>2005-12</date><risdate>2005</risdate><volume>43</volume><issue>12</issue><spage>999</spage><epage>1007</epage><pages>999-1007</pages><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>Indirect covariance NMR offers an alternative method of extracting spin–spin connectivity information via the conversion of an indirect‐detection heteronuclear shift‐correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)‐HSQC‐TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon–carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C–13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon–carbon connectivities only between contiguous protonated carbons. Cyclopentafuranone and the complex polynuclear heteroaromatic naphtho[2′,1′:5,6]‐naphtho[2′,1′:4,5]thieno[2,3‐c]quinoline are used as model compounds. The former is a straightforward example because of its well‐resolved proton spectrum, while the latter, which has considerable resonance overlap in its congested proton spectrum, gives rise to two types of artifact responses that must be considered when using the indirect covariance NMR method. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>16144032</pmid><doi>10.1002/mrc.1674</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-1581
ispartof Magnetic resonance in chemistry, 2005-12, Vol.43 (12), p.999-1007
issn 0749-1581
1097-458X
language eng
recordid cdi_proquest_miscellaneous_68873215
source Wiley Online Library - AutoHoldings Journals
subjects carbon-carbon vicinal correlation
IDR-HSQC-TOCSY
indirect covariance NMR
title Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20elimination%20of%20artifacts%20in%20indirect%20covariance%20NMR%20spectra%20via%20unsymmetrical%20processing&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Blinov,%20Kirill%20A.&rft.date=2005-12&rft.volume=43&rft.issue=12&rft.spage=999&rft.epage=1007&rft.pages=999-1007&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.1674&rft_dat=%3Cproquest_cross%3E68873215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68873215&rft_id=info:pmid/16144032&rfr_iscdi=true