Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth
Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularl...
Gespeichert in:
Veröffentlicht in: | Biometrics 2006-09, Vol.62 (3), p.864-876 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 876 |
---|---|
container_issue | 3 |
container_start_page | 864 |
container_title | Biometrics |
container_volume | 62 |
creator | Banerjee, Sudipto Johnson, Gregg A |
description | Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design. |
doi_str_mv | 10.1111/j.1541-0420.2006.00535.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68873047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4124597</jstor_id><sourcerecordid>4124597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</originalsourceid><addsrcrecordid>eNqNkcGO0zAURS0EYsrAHyCwWLBLsGM7ThYshsKUkabMojOUneUkTnFw62AntGXFJ_CNfAlOUxWJDXhj-71zr_TeBQBiFONwXjUxZhRHiCYoThBKY4QYYfHuHpicGvfBBIVWRCj-dAYeed-Eb85Q8hCc4TTPKCFoArqpdWql7UYa_V1VcKE3K6N-_fgJ5aaC89502ilvTd8FBi5a2WlpzB5-lG4fUDhzdtt9htPefVNwbitlhupWh9pF2xpdyoOws3Cpgv2IPwYPamm8enK8z8Hd5bvb6fvo-mZ2Nb24jkrGMhbRuqwkLtOM45oRXOKiTpVkOQ7TVShRhcSEFiivE57XMiOU8JwXDBGe8LoqEDkHL0ff1tmvvfKdWGtfKmPkRtneizTLOEGU_xMkBJOwvAF88RfY2N6F5XmRYJKRlCIcoGyESme9d6oWrdPrsDCBkRjyE40YYhJDTGLITxzyE7sgfXb074u1qv4Ij4EF4PUIbLVR-_82Fm-ububhFfRPR33jO-tOeooTyg7zRWNb-07tTm3pvoiUE87E8sNM5BTfvmWXSzEN_PORr6UVcuW0F3eLBGGGEKYZCVn8BrK5y6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213836401</pqid></control><display><type>article</type><title>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Banerjee, Sudipto ; Johnson, Gregg A</creator><creatorcontrib>Banerjee, Sudipto ; Johnson, Gregg A</creatorcontrib><description>Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2006.00535.x</identifier><identifier>PMID: 16984330</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>agricultural statistics ; Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Biometrics ; Biometry ; Coregionalization ; Covariance matrices ; Crops ; geocoding ; geographic information systems ; Growth curves ; Growth models ; Identifiability ; Kronecker products ; Markov chain Monte Carlo ; Markov Chains ; Mathematical independent variables ; Mathematical vectors ; Modeling ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; Multiresolution models ; Multivariate Gaussian processes ; Nonseparable models ; Nonstationary models ; Normal Distribution ; Parametric models ; Plant growth ; prediction ; Setaria Plant - growth & development ; Spatial models ; Statistical analysis ; statistical models ; Weeds</subject><ispartof>Biometrics, 2006-09, Vol.62 (3), p.864-876</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2006, The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</citedby><cites>FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4124597$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4124597$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45553,45554,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16984330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Sudipto</creatorcontrib><creatorcontrib>Johnson, Gregg A</creatorcontrib><title>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.</description><subject>agricultural statistics</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Coregionalization</subject><subject>Covariance matrices</subject><subject>Crops</subject><subject>geocoding</subject><subject>geographic information systems</subject><subject>Growth curves</subject><subject>Growth models</subject><subject>Identifiability</subject><subject>Kronecker products</subject><subject>Markov chain Monte Carlo</subject><subject>Markov Chains</subject><subject>Mathematical independent variables</subject><subject>Mathematical vectors</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Multiresolution models</subject><subject>Multivariate Gaussian processes</subject><subject>Nonseparable models</subject><subject>Nonstationary models</subject><subject>Normal Distribution</subject><subject>Parametric models</subject><subject>Plant growth</subject><subject>prediction</subject><subject>Setaria Plant - growth & development</subject><subject>Spatial models</subject><subject>Statistical analysis</subject><subject>statistical models</subject><subject>Weeds</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcGO0zAURS0EYsrAHyCwWLBLsGM7ThYshsKUkabMojOUneUkTnFw62AntGXFJ_CNfAlOUxWJDXhj-71zr_TeBQBiFONwXjUxZhRHiCYoThBKY4QYYfHuHpicGvfBBIVWRCj-dAYeed-Eb85Q8hCc4TTPKCFoArqpdWql7UYa_V1VcKE3K6N-_fgJ5aaC89502ilvTd8FBi5a2WlpzB5-lG4fUDhzdtt9htPefVNwbitlhupWh9pF2xpdyoOws3Cpgv2IPwYPamm8enK8z8Hd5bvb6fvo-mZ2Nb24jkrGMhbRuqwkLtOM45oRXOKiTpVkOQ7TVShRhcSEFiivE57XMiOU8JwXDBGe8LoqEDkHL0ff1tmvvfKdWGtfKmPkRtneizTLOEGU_xMkBJOwvAF88RfY2N6F5XmRYJKRlCIcoGyESme9d6oWrdPrsDCBkRjyE40YYhJDTGLITxzyE7sgfXb074u1qv4Ij4EF4PUIbLVR-_82Fm-ububhFfRPR33jO-tOeooTyg7zRWNb-07tTm3pvoiUE87E8sNM5BTfvmWXSzEN_PORr6UVcuW0F3eLBGGGEKYZCVn8BrK5y6A</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Banerjee, Sudipto</creator><creator>Johnson, Gregg A</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</title><author>Banerjee, Sudipto ; Johnson, Gregg A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>agricultural statistics</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Coregionalization</topic><topic>Covariance matrices</topic><topic>Crops</topic><topic>geocoding</topic><topic>geographic information systems</topic><topic>Growth curves</topic><topic>Growth models</topic><topic>Identifiability</topic><topic>Kronecker products</topic><topic>Markov chain Monte Carlo</topic><topic>Markov Chains</topic><topic>Mathematical independent variables</topic><topic>Mathematical vectors</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Multiresolution models</topic><topic>Multivariate Gaussian processes</topic><topic>Nonseparable models</topic><topic>Nonstationary models</topic><topic>Normal Distribution</topic><topic>Parametric models</topic><topic>Plant growth</topic><topic>prediction</topic><topic>Setaria Plant - growth & development</topic><topic>Spatial models</topic><topic>Statistical analysis</topic><topic>statistical models</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Sudipto</creatorcontrib><creatorcontrib>Johnson, Gregg A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Sudipto</au><au>Johnson, Gregg A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>3</issue><spage>864</spage><epage>876</epage><pages>864-876</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16984330</pmid><doi>10.1111/j.1541-0420.2006.00535.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2006-09, Vol.62 (3), p.864-876 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_68873047 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | agricultural statistics Bayes Theorem Bayesian analysis Bayesian inference Biometrics Biometry Coregionalization Covariance matrices Crops geocoding geographic information systems Growth curves Growth models Identifiability Kronecker products Markov chain Monte Carlo Markov Chains Mathematical independent variables Mathematical vectors Modeling Models, Biological Models, Statistical Monte Carlo Method Multiresolution models Multivariate Gaussian processes Nonseparable models Nonstationary models Normal Distribution Parametric models Plant growth prediction Setaria Plant - growth & development Spatial models Statistical analysis statistical models Weeds |
title | Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coregionalized%20Single%E2%80%90%20and%20Multiresolution%20Spatially%20Varying%20Growth%20Curve%20Modeling%20with%20Application%20to%20Weed%20Growth&rft.jtitle=Biometrics&rft.au=Banerjee,%20Sudipto&rft.date=2006-09&rft.volume=62&rft.issue=3&rft.spage=864&rft.epage=876&rft.pages=864-876&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2006.00535.x&rft_dat=%3Cjstor_proqu%3E4124597%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213836401&rft_id=info:pmid/16984330&rft_jstor_id=4124597&rfr_iscdi=true |