Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth

Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2006-09, Vol.62 (3), p.864-876
Hauptverfasser: Banerjee, Sudipto, Johnson, Gregg A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 3
container_start_page 864
container_title Biometrics
container_volume 62
creator Banerjee, Sudipto
Johnson, Gregg A
description Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.
doi_str_mv 10.1111/j.1541-0420.2006.00535.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68873047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4124597</jstor_id><sourcerecordid>4124597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</originalsourceid><addsrcrecordid>eNqNkcGO0zAURS0EYsrAHyCwWLBLsGM7ThYshsKUkabMojOUneUkTnFw62AntGXFJ_CNfAlOUxWJDXhj-71zr_TeBQBiFONwXjUxZhRHiCYoThBKY4QYYfHuHpicGvfBBIVWRCj-dAYeed-Eb85Q8hCc4TTPKCFoArqpdWql7UYa_V1VcKE3K6N-_fgJ5aaC89502ilvTd8FBi5a2WlpzB5-lG4fUDhzdtt9htPefVNwbitlhupWh9pF2xpdyoOws3Cpgv2IPwYPamm8enK8z8Hd5bvb6fvo-mZ2Nb24jkrGMhbRuqwkLtOM45oRXOKiTpVkOQ7TVShRhcSEFiivE57XMiOU8JwXDBGe8LoqEDkHL0ff1tmvvfKdWGtfKmPkRtneizTLOEGU_xMkBJOwvAF88RfY2N6F5XmRYJKRlCIcoGyESme9d6oWrdPrsDCBkRjyE40YYhJDTGLITxzyE7sgfXb074u1qv4Ij4EF4PUIbLVR-_82Fm-ububhFfRPR33jO-tOeooTyg7zRWNb-07tTm3pvoiUE87E8sNM5BTfvmWXSzEN_PORr6UVcuW0F3eLBGGGEKYZCVn8BrK5y6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213836401</pqid></control><display><type>article</type><title>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Banerjee, Sudipto ; Johnson, Gregg A</creator><creatorcontrib>Banerjee, Sudipto ; Johnson, Gregg A</creatorcontrib><description>Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2006.00535.x</identifier><identifier>PMID: 16984330</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>agricultural statistics ; Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Biometrics ; Biometry ; Coregionalization ; Covariance matrices ; Crops ; geocoding ; geographic information systems ; Growth curves ; Growth models ; Identifiability ; Kronecker products ; Markov chain Monte Carlo ; Markov Chains ; Mathematical independent variables ; Mathematical vectors ; Modeling ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; Multiresolution models ; Multivariate Gaussian processes ; Nonseparable models ; Nonstationary models ; Normal Distribution ; Parametric models ; Plant growth ; prediction ; Setaria Plant - growth &amp; development ; Spatial models ; Statistical analysis ; statistical models ; Weeds</subject><ispartof>Biometrics, 2006-09, Vol.62 (3), p.864-876</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2006, The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</citedby><cites>FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4124597$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4124597$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45553,45554,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16984330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Sudipto</creatorcontrib><creatorcontrib>Johnson, Gregg A</creatorcontrib><title>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.</description><subject>agricultural statistics</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Coregionalization</subject><subject>Covariance matrices</subject><subject>Crops</subject><subject>geocoding</subject><subject>geographic information systems</subject><subject>Growth curves</subject><subject>Growth models</subject><subject>Identifiability</subject><subject>Kronecker products</subject><subject>Markov chain Monte Carlo</subject><subject>Markov Chains</subject><subject>Mathematical independent variables</subject><subject>Mathematical vectors</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Multiresolution models</subject><subject>Multivariate Gaussian processes</subject><subject>Nonseparable models</subject><subject>Nonstationary models</subject><subject>Normal Distribution</subject><subject>Parametric models</subject><subject>Plant growth</subject><subject>prediction</subject><subject>Setaria Plant - growth &amp; development</subject><subject>Spatial models</subject><subject>Statistical analysis</subject><subject>statistical models</subject><subject>Weeds</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcGO0zAURS0EYsrAHyCwWLBLsGM7ThYshsKUkabMojOUneUkTnFw62AntGXFJ_CNfAlOUxWJDXhj-71zr_TeBQBiFONwXjUxZhRHiCYoThBKY4QYYfHuHpicGvfBBIVWRCj-dAYeed-Eb85Q8hCc4TTPKCFoArqpdWql7UYa_V1VcKE3K6N-_fgJ5aaC89502ilvTd8FBi5a2WlpzB5-lG4fUDhzdtt9htPefVNwbitlhupWh9pF2xpdyoOws3Cpgv2IPwYPamm8enK8z8Hd5bvb6fvo-mZ2Nb24jkrGMhbRuqwkLtOM45oRXOKiTpVkOQ7TVShRhcSEFiivE57XMiOU8JwXDBGe8LoqEDkHL0ff1tmvvfKdWGtfKmPkRtneizTLOEGU_xMkBJOwvAF88RfY2N6F5XmRYJKRlCIcoGyESme9d6oWrdPrsDCBkRjyE40YYhJDTGLITxzyE7sgfXb074u1qv4Ij4EF4PUIbLVR-_82Fm-ububhFfRPR33jO-tOeooTyg7zRWNb-07tTm3pvoiUE87E8sNM5BTfvmWXSzEN_PORr6UVcuW0F3eLBGGGEKYZCVn8BrK5y6A</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Banerjee, Sudipto</creator><creator>Johnson, Gregg A</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</title><author>Banerjee, Sudipto ; Johnson, Gregg A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5585-4fcda1c6871f531c1bf6ea591420d02eba134b09f279fa8343797b503727fdb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>agricultural statistics</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Coregionalization</topic><topic>Covariance matrices</topic><topic>Crops</topic><topic>geocoding</topic><topic>geographic information systems</topic><topic>Growth curves</topic><topic>Growth models</topic><topic>Identifiability</topic><topic>Kronecker products</topic><topic>Markov chain Monte Carlo</topic><topic>Markov Chains</topic><topic>Mathematical independent variables</topic><topic>Mathematical vectors</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Multiresolution models</topic><topic>Multivariate Gaussian processes</topic><topic>Nonseparable models</topic><topic>Nonstationary models</topic><topic>Normal Distribution</topic><topic>Parametric models</topic><topic>Plant growth</topic><topic>prediction</topic><topic>Setaria Plant - growth &amp; development</topic><topic>Spatial models</topic><topic>Statistical analysis</topic><topic>statistical models</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Sudipto</creatorcontrib><creatorcontrib>Johnson, Gregg A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Sudipto</au><au>Johnson, Gregg A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>3</issue><spage>864</spage><epage>876</epage><pages>864-876</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16984330</pmid><doi>10.1111/j.1541-0420.2006.00535.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2006-09, Vol.62 (3), p.864-876
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_68873047
source MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects agricultural statistics
Bayes Theorem
Bayesian analysis
Bayesian inference
Biometrics
Biometry
Coregionalization
Covariance matrices
Crops
geocoding
geographic information systems
Growth curves
Growth models
Identifiability
Kronecker products
Markov chain Monte Carlo
Markov Chains
Mathematical independent variables
Mathematical vectors
Modeling
Models, Biological
Models, Statistical
Monte Carlo Method
Multiresolution models
Multivariate Gaussian processes
Nonseparable models
Nonstationary models
Normal Distribution
Parametric models
Plant growth
prediction
Setaria Plant - growth & development
Spatial models
Statistical analysis
statistical models
Weeds
title Coregionalized Single‐ and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coregionalized%20Single%E2%80%90%20and%20Multiresolution%20Spatially%20Varying%20Growth%20Curve%20Modeling%20with%20Application%20to%20Weed%20Growth&rft.jtitle=Biometrics&rft.au=Banerjee,%20Sudipto&rft.date=2006-09&rft.volume=62&rft.issue=3&rft.spage=864&rft.epage=876&rft.pages=864-876&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2006.00535.x&rft_dat=%3Cjstor_proqu%3E4124597%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213836401&rft_id=info:pmid/16984330&rft_jstor_id=4124597&rfr_iscdi=true