Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models

We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2006-09, Vol.62 (3), p.713-720
1. Verfasser: Cadigan, N. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 720
container_issue 3
container_start_page 713
container_title Biometrics
container_volume 62
creator Cadigan, N. G.
description We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates.
doi_str_mv 10.1111/j.1541-0420.2005.00517.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68871434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4124579</jstor_id><sourcerecordid>4124579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</originalsourceid><addsrcrecordid>eNqNkdFu0zAYhSMEYmXwBghZXOwuwY6dOL7ggpZtVGRsbCC4s5zk9-Y2iYediO49eGDcpioSN2DJsq3znSP9PlGECE5IWG9WCckYiTFLcZJinCVhE55sHkWzg_A4mmGM85gy8v0oeub9KjxFhtOn0RHJRcEoSWfRr9LWqkXLXrcj9DWg90bd9tYPpvZIW4c-j8qbuDRraM2dtQ1SfYNKGxjXBeNpIDs1gEdWI4Xmxrb21mwjr0GD20VeWdMPSDvboRvbAToz_g7dDLZe78KuoXajGToI0IVtoPXPoydatR5e7M_j6OvZ6ZfFh7i8PF8u3pVxzQrG46zhQLgmmOtGcFUrmrFKC9VgXTCsc1YJUak0DKpSUfC8YiAYVFyxrBJM5PQ4Oply7539MYIfZGd8DW2rerCjl3lRcMIo-ydIacpwTnkAX_8Fruzo-jCETAktaDZBxQTVznrvQMt7Fz7RPUiC5bZfuZLbGuW2RrntV-76lZtgfbXPH6sOmj_GfaEBeDsBP00LD_8dLOfLy4twC_6Xk3_lB-sOfkZSlnER5HiSjR9gc5CVW8ucU57Jb5_OJcflYv5xLuQV_Q2P1My7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835637</pqid></control><display><type>article</type><title>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Cadigan, N. G.</creator><creatorcontrib>Cadigan, N. G.</creatorcontrib><description>We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00517.x</identifier><identifier>PMID: 16984312</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Biometrics ; Biometry - methods ; Case-deletion diagnostics ; Case-weight influence ; Diagnostics ; Estimating techniques ; Estimation methods ; Estimators ; Fish ; Fisheries ; Fisheries - statistics &amp; numerical data ; Fisheries management ; Fisheries science ; Flounder ; Likelihood Functions ; Limit reference points ; Linear Models ; Modeling ; Models, Biological ; Models, Statistical ; Ocean fisheries ; Parametric models ; Recruitment ; Sample size ; Sensitivity analysis ; Sensitivity and Specificity ; Statistical variance</subject><ispartof>Biometrics, 2006-09, Vol.62 (3), p.713-720</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2006, Her Majesty in Right of Canada. As Represented by the Minister of Fisheries and Oceans</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</citedby><cites>FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4124579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4124579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16984312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cadigan, N. G.</creatorcontrib><title>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates.</description><subject>Animals</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Case-deletion diagnostics</subject><subject>Case-weight influence</subject><subject>Diagnostics</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Fish</subject><subject>Fisheries</subject><subject>Fisheries - statistics &amp; numerical data</subject><subject>Fisheries management</subject><subject>Fisheries science</subject><subject>Flounder</subject><subject>Likelihood Functions</subject><subject>Limit reference points</subject><subject>Linear Models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Ocean fisheries</subject><subject>Parametric models</subject><subject>Recruitment</subject><subject>Sample size</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Statistical variance</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdFu0zAYhSMEYmXwBghZXOwuwY6dOL7ggpZtVGRsbCC4s5zk9-Y2iYediO49eGDcpioSN2DJsq3znSP9PlGECE5IWG9WCckYiTFLcZJinCVhE55sHkWzg_A4mmGM85gy8v0oeub9KjxFhtOn0RHJRcEoSWfRr9LWqkXLXrcj9DWg90bd9tYPpvZIW4c-j8qbuDRraM2dtQ1SfYNKGxjXBeNpIDs1gEdWI4Xmxrb21mwjr0GD20VeWdMPSDvboRvbAToz_g7dDLZe78KuoXajGToI0IVtoPXPoydatR5e7M_j6OvZ6ZfFh7i8PF8u3pVxzQrG46zhQLgmmOtGcFUrmrFKC9VgXTCsc1YJUak0DKpSUfC8YiAYVFyxrBJM5PQ4Oply7539MYIfZGd8DW2rerCjl3lRcMIo-ydIacpwTnkAX_8Fruzo-jCETAktaDZBxQTVznrvQMt7Fz7RPUiC5bZfuZLbGuW2RrntV-76lZtgfbXPH6sOmj_GfaEBeDsBP00LD_8dLOfLy4twC_6Xk3_lB-sOfkZSlnER5HiSjR9gc5CVW8ucU57Jb5_OJcflYv5xLuQV_Q2P1My7</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Cadigan, N. G.</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</title><author>Cadigan, N. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Case-deletion diagnostics</topic><topic>Case-weight influence</topic><topic>Diagnostics</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Fish</topic><topic>Fisheries</topic><topic>Fisheries - statistics &amp; numerical data</topic><topic>Fisheries management</topic><topic>Fisheries science</topic><topic>Flounder</topic><topic>Likelihood Functions</topic><topic>Limit reference points</topic><topic>Linear Models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Ocean fisheries</topic><topic>Parametric models</topic><topic>Recruitment</topic><topic>Sample size</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadigan, N. G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadigan, N. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>3</issue><spage>713</spage><epage>720</epage><pages>713-720</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16984312</pmid><doi>10.1111/j.1541-0420.2005.00517.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2006-09, Vol.62 (3), p.713-720
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_68871434
source MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals
subjects Animals
Biometrics
Biometry - methods
Case-deletion diagnostics
Case-weight influence
Diagnostics
Estimating techniques
Estimation methods
Estimators
Fish
Fisheries
Fisheries - statistics & numerical data
Fisheries management
Fisheries science
Flounder
Likelihood Functions
Limit reference points
Linear Models
Modeling
Models, Biological
Models, Statistical
Ocean fisheries
Parametric models
Recruitment
Sample size
Sensitivity analysis
Sensitivity and Specificity
Statistical variance
title Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Influence%20Diagnostics%20for%20Quasi-Likelihood%20and%20Lognormal%20Estimates%20of%20a%20Biological%20Reference%20Point%20from%20Some%20Fish%20Stock%20and%20Recruitment%20Models&rft.jtitle=Biometrics&rft.au=Cadigan,%20N.%20G.&rft.date=2006-09&rft.volume=62&rft.issue=3&rft.spage=713&rft.epage=720&rft.pages=713-720&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00517.x&rft_dat=%3Cjstor_proqu%3E4124579%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213835637&rft_id=info:pmid/16984312&rft_jstor_id=4124579&rfr_iscdi=true