Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models
We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we exa...
Gespeichert in:
Veröffentlicht in: | Biometrics 2006-09, Vol.62 (3), p.713-720 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 3 |
container_start_page | 713 |
container_title | Biometrics |
container_volume | 62 |
creator | Cadigan, N. G. |
description | We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates. |
doi_str_mv | 10.1111/j.1541-0420.2005.00517.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68871434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4124579</jstor_id><sourcerecordid>4124579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</originalsourceid><addsrcrecordid>eNqNkdFu0zAYhSMEYmXwBghZXOwuwY6dOL7ggpZtVGRsbCC4s5zk9-Y2iYediO49eGDcpioSN2DJsq3znSP9PlGECE5IWG9WCckYiTFLcZJinCVhE55sHkWzg_A4mmGM85gy8v0oeub9KjxFhtOn0RHJRcEoSWfRr9LWqkXLXrcj9DWg90bd9tYPpvZIW4c-j8qbuDRraM2dtQ1SfYNKGxjXBeNpIDs1gEdWI4Xmxrb21mwjr0GD20VeWdMPSDvboRvbAToz_g7dDLZe78KuoXajGToI0IVtoPXPoydatR5e7M_j6OvZ6ZfFh7i8PF8u3pVxzQrG46zhQLgmmOtGcFUrmrFKC9VgXTCsc1YJUak0DKpSUfC8YiAYVFyxrBJM5PQ4Oply7539MYIfZGd8DW2rerCjl3lRcMIo-ydIacpwTnkAX_8Fruzo-jCETAktaDZBxQTVznrvQMt7Fz7RPUiC5bZfuZLbGuW2RrntV-76lZtgfbXPH6sOmj_GfaEBeDsBP00LD_8dLOfLy4twC_6Xk3_lB-sOfkZSlnER5HiSjR9gc5CVW8ucU57Jb5_OJcflYv5xLuQV_Q2P1My7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835637</pqid></control><display><type>article</type><title>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Cadigan, N. G.</creator><creatorcontrib>Cadigan, N. G.</creatorcontrib><description>We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00517.x</identifier><identifier>PMID: 16984312</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Biometrics ; Biometry - methods ; Case-deletion diagnostics ; Case-weight influence ; Diagnostics ; Estimating techniques ; Estimation methods ; Estimators ; Fish ; Fisheries ; Fisheries - statistics & numerical data ; Fisheries management ; Fisheries science ; Flounder ; Likelihood Functions ; Limit reference points ; Linear Models ; Modeling ; Models, Biological ; Models, Statistical ; Ocean fisheries ; Parametric models ; Recruitment ; Sample size ; Sensitivity analysis ; Sensitivity and Specificity ; Statistical variance</subject><ispartof>Biometrics, 2006-09, Vol.62 (3), p.713-720</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2006, Her Majesty in Right of Canada. As Represented by the Minister of Fisheries and Oceans</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</citedby><cites>FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4124579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4124579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16984312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cadigan, N. G.</creatorcontrib><title>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates.</description><subject>Animals</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Case-deletion diagnostics</subject><subject>Case-weight influence</subject><subject>Diagnostics</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Fish</subject><subject>Fisheries</subject><subject>Fisheries - statistics & numerical data</subject><subject>Fisheries management</subject><subject>Fisheries science</subject><subject>Flounder</subject><subject>Likelihood Functions</subject><subject>Limit reference points</subject><subject>Linear Models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Ocean fisheries</subject><subject>Parametric models</subject><subject>Recruitment</subject><subject>Sample size</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Statistical variance</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdFu0zAYhSMEYmXwBghZXOwuwY6dOL7ggpZtVGRsbCC4s5zk9-Y2iYediO49eGDcpioSN2DJsq3znSP9PlGECE5IWG9WCckYiTFLcZJinCVhE55sHkWzg_A4mmGM85gy8v0oeub9KjxFhtOn0RHJRcEoSWfRr9LWqkXLXrcj9DWg90bd9tYPpvZIW4c-j8qbuDRraM2dtQ1SfYNKGxjXBeNpIDs1gEdWI4Xmxrb21mwjr0GD20VeWdMPSDvboRvbAToz_g7dDLZe78KuoXajGToI0IVtoPXPoydatR5e7M_j6OvZ6ZfFh7i8PF8u3pVxzQrG46zhQLgmmOtGcFUrmrFKC9VgXTCsc1YJUak0DKpSUfC8YiAYVFyxrBJM5PQ4Oply7539MYIfZGd8DW2rerCjl3lRcMIo-ydIacpwTnkAX_8Fruzo-jCETAktaDZBxQTVznrvQMt7Fz7RPUiC5bZfuZLbGuW2RrntV-76lZtgfbXPH6sOmj_GfaEBeDsBP00LD_8dLOfLy4twC_6Xk3_lB-sOfkZSlnER5HiSjR9gc5CVW8ucU57Jb5_OJcflYv5xLuQV_Q2P1My7</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Cadigan, N. G.</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</title><author>Cadigan, N. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-5d7e17f107fd97aca354bf9ad0f840f64b99ba2431a29876b4e94eb7a45b94963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Case-deletion diagnostics</topic><topic>Case-weight influence</topic><topic>Diagnostics</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Fish</topic><topic>Fisheries</topic><topic>Fisheries - statistics & numerical data</topic><topic>Fisheries management</topic><topic>Fisheries science</topic><topic>Flounder</topic><topic>Likelihood Functions</topic><topic>Limit reference points</topic><topic>Linear Models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Ocean fisheries</topic><topic>Parametric models</topic><topic>Recruitment</topic><topic>Sample size</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadigan, N. G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadigan, N. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>3</issue><spage>713</spage><epage>720</epage><pages>713-720</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We present local influence diagnostics to measure the sensitivity of a biological limit reference point (LRP) estimated from fitting a model to stock and recruitment data. LRPs are low levels of stock size that the management of commercial fisheries should avoid with high probability. The LRP we examine is the stock size at which recruitment is 50% of the maximum ($S_{50%}$). We derive analytic equations to describe the effects on$S_{50%}$of changing the weight that observations are given in estimation. We derive equations for the Ricker, Beverton-Holt, and hockey-stick stock-recruit models, and four estimation methods including the error sums of squares method on log responses and three quasi-likelihood methods. We conclude from case studies that the hockey-stick model produces the most robust estimates.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16984312</pmid><doi>10.1111/j.1541-0420.2005.00517.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2006-09, Vol.62 (3), p.713-720 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_68871434 |
source | MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals |
subjects | Animals Biometrics Biometry - methods Case-deletion diagnostics Case-weight influence Diagnostics Estimating techniques Estimation methods Estimators Fish Fisheries Fisheries - statistics & numerical data Fisheries management Fisheries science Flounder Likelihood Functions Limit reference points Linear Models Modeling Models, Biological Models, Statistical Ocean fisheries Parametric models Recruitment Sample size Sensitivity analysis Sensitivity and Specificity Statistical variance |
title | Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Influence%20Diagnostics%20for%20Quasi-Likelihood%20and%20Lognormal%20Estimates%20of%20a%20Biological%20Reference%20Point%20from%20Some%20Fish%20Stock%20and%20Recruitment%20Models&rft.jtitle=Biometrics&rft.au=Cadigan,%20N.%20G.&rft.date=2006-09&rft.volume=62&rft.issue=3&rft.spage=713&rft.epage=720&rft.pages=713-720&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00517.x&rft_dat=%3Cjstor_proqu%3E4124579%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213835637&rft_id=info:pmid/16984312&rft_jstor_id=4124579&rfr_iscdi=true |