Structure of Human Phytanoyl-CoA 2-Hydroxylase Identifies Molecular Mechanisms of Refsum Disease
Refsum disease (RD), a neurological syndrome characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia, is caused by elevated levels of phytanic acid. Many cases of RD are associated with mutations in phytanoyl-CoA 2-hydroxylase (PAHX), an Fe(II) and 2-ox...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-12, Vol.280 (49), p.41101-41110 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41110 |
---|---|
container_issue | 49 |
container_start_page | 41101 |
container_title | The Journal of biological chemistry |
container_volume | 280 |
creator | McDonough, Michael A. Kavanagh, Kathryn L. Butler, Danica Searls, Timothy Oppermann, Udo Schofield, Christopher J. |
description | Refsum disease (RD), a neurological syndrome characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia, is caused by elevated levels of phytanic acid. Many cases of RD are associated with mutations in phytanoyl-CoA 2-hydroxylase (PAHX), an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the initial α-oxidation step in the degradation of phytenic acid in peroxisomes. We describe the x-ray crystallographic structure of PAHX to 2.5 Å resolution complexed with Fe(II) and 2OG and predict the molecular consequences of mutations causing RD. Like other 2OG oxygenases, PAHX possesses a double-stranded β-helix core, which supports three iron binding ligands (His175, Asp177, and His264); the 2-oxoacid group of 2OG binds to the Fe(II) in a bidentate manner. The manner in which PAHX binds to Fe(II) and 2OG together with the presence of a cysteine residue (Cys191) 6.7 Å from the Fe(II) and two further histidine residues (His155 and His281) at its active site distinguishes it from that of the other human 2OG oxygenase for which structures are available, factor inhibiting hypoxia-inducible factor. Of the 15 PAHX residues observed to be mutated in RD patients, 11 cluster in two distinct groups around the Fe(II) (Pro173, His175, Gln176, Asp177, and His220) and 2OG binding sites (Trp193, Glu197, Ile199, Gly204, Asn269, and Arg275). PAHX may be the first of a new subfamily of coenzyme A-binding 2OG oxygenases. |
doi_str_mv | 10.1074/jbc.M507528200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68865383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820590819</els_id><sourcerecordid>68865383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-5ac5cd12f8d3eae2849078cf2ad25d775e02aee98ad952a4130d58564cbe469b3</originalsourceid><addsrcrecordid>eNp1kM9P2zAYhi0Egq5w3RHlgHZLZzt24hyrbqNIVCB-SNw8x_5CXCUx2MlG_vu5aiVO-y7v5XlffXoQ-krwguCCfd9WerHhuOBUUIyP0IxgkaUZJy_HaIYxJWlJuThDX0LY4nisJKfojORE5ISyGfr9OPhRD6OHxNXJeuxUn9w306B6N7Xpyi0Tmq4n493H1KoAyY2BfrC1hZBsXAt6bJVPNqAb1dvQhd3IA9Rh7JIfNkBsnKOTWrUBLg45R8-_fj6t1unt3fXNanmbalYUQ8qV5toQWguTgQIqWIkLoWuqDOWmKDhgqgBKoUzJqWIkw4YLnjNdAcvLKpujb_vdN-_eRwiD7GzQ0LaqBzcGmQuR80xkEVzsQe1dCB5q-eZtp_wkCZY7pzI6lZ9OY-HysDxWHZhP_CAxAld7oLGvzV_rQVbW6QY6SQWWrJSMEEwiJvYYRA1_LHgZtIVeg4kVPUjj7P9e-AcnopGG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68865383</pqid></control><display><type>article</type><title>Structure of Human Phytanoyl-CoA 2-Hydroxylase Identifies Molecular Mechanisms of Refsum Disease</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>McDonough, Michael A. ; Kavanagh, Kathryn L. ; Butler, Danica ; Searls, Timothy ; Oppermann, Udo ; Schofield, Christopher J.</creator><creatorcontrib>McDonough, Michael A. ; Kavanagh, Kathryn L. ; Butler, Danica ; Searls, Timothy ; Oppermann, Udo ; Schofield, Christopher J.</creatorcontrib><description>Refsum disease (RD), a neurological syndrome characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia, is caused by elevated levels of phytanic acid. Many cases of RD are associated with mutations in phytanoyl-CoA 2-hydroxylase (PAHX), an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the initial α-oxidation step in the degradation of phytenic acid in peroxisomes. We describe the x-ray crystallographic structure of PAHX to 2.5 Å resolution complexed with Fe(II) and 2OG and predict the molecular consequences of mutations causing RD. Like other 2OG oxygenases, PAHX possesses a double-stranded β-helix core, which supports three iron binding ligands (His175, Asp177, and His264); the 2-oxoacid group of 2OG binds to the Fe(II) in a bidentate manner. The manner in which PAHX binds to Fe(II) and 2OG together with the presence of a cysteine residue (Cys191) 6.7 Å from the Fe(II) and two further histidine residues (His155 and His281) at its active site distinguishes it from that of the other human 2OG oxygenase for which structures are available, factor inhibiting hypoxia-inducible factor. Of the 15 PAHX residues observed to be mutated in RD patients, 11 cluster in two distinct groups around the Fe(II) (Pro173, His175, Gln176, Asp177, and His220) and 2OG binding sites (Trp193, Glu197, Ile199, Gly204, Asn269, and Arg275). PAHX may be the first of a new subfamily of coenzyme A-binding 2OG oxygenases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M507528200</identifier><identifier>PMID: 16186124</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aspartic Acid - metabolism ; Binding Sites - genetics ; Coenzyme A - metabolism ; Crystallization ; Crystallography, X-Ray ; Cysteine - metabolism ; Escherichia coli - genetics ; Ferrous Compounds - metabolism ; Histidine - metabolism ; Humans ; Ketoglutaric Acids - metabolism ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - genetics ; Models, Molecular ; Mutation ; Peroxisomes - enzymology ; Phytanic Acid - analogs & derivatives ; Phytanic Acid - metabolism ; Protein Binding ; Protein Structure, Secondary ; Recombinant Proteins ; Refsum Disease - drug therapy ; Refsum Disease - enzymology ; Structure-Activity Relationship ; Transfection</subject><ispartof>The Journal of biological chemistry, 2005-12, Vol.280 (49), p.41101-41110</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-5ac5cd12f8d3eae2849078cf2ad25d775e02aee98ad952a4130d58564cbe469b3</citedby><cites>FETCH-LOGICAL-c477t-5ac5cd12f8d3eae2849078cf2ad25d775e02aee98ad952a4130d58564cbe469b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16186124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDonough, Michael A.</creatorcontrib><creatorcontrib>Kavanagh, Kathryn L.</creatorcontrib><creatorcontrib>Butler, Danica</creatorcontrib><creatorcontrib>Searls, Timothy</creatorcontrib><creatorcontrib>Oppermann, Udo</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><title>Structure of Human Phytanoyl-CoA 2-Hydroxylase Identifies Molecular Mechanisms of Refsum Disease</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Refsum disease (RD), a neurological syndrome characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia, is caused by elevated levels of phytanic acid. Many cases of RD are associated with mutations in phytanoyl-CoA 2-hydroxylase (PAHX), an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the initial α-oxidation step in the degradation of phytenic acid in peroxisomes. We describe the x-ray crystallographic structure of PAHX to 2.5 Å resolution complexed with Fe(II) and 2OG and predict the molecular consequences of mutations causing RD. Like other 2OG oxygenases, PAHX possesses a double-stranded β-helix core, which supports three iron binding ligands (His175, Asp177, and His264); the 2-oxoacid group of 2OG binds to the Fe(II) in a bidentate manner. The manner in which PAHX binds to Fe(II) and 2OG together with the presence of a cysteine residue (Cys191) 6.7 Å from the Fe(II) and two further histidine residues (His155 and His281) at its active site distinguishes it from that of the other human 2OG oxygenase for which structures are available, factor inhibiting hypoxia-inducible factor. Of the 15 PAHX residues observed to be mutated in RD patients, 11 cluster in two distinct groups around the Fe(II) (Pro173, His175, Gln176, Asp177, and His220) and 2OG binding sites (Trp193, Glu197, Ile199, Gly204, Asn269, and Arg275). PAHX may be the first of a new subfamily of coenzyme A-binding 2OG oxygenases.</description><subject>Aspartic Acid - metabolism</subject><subject>Binding Sites - genetics</subject><subject>Coenzyme A - metabolism</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Ferrous Compounds - metabolism</subject><subject>Histidine - metabolism</subject><subject>Humans</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Peroxisomes - enzymology</subject><subject>Phytanic Acid - analogs & derivatives</subject><subject>Phytanic Acid - metabolism</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins</subject><subject>Refsum Disease - drug therapy</subject><subject>Refsum Disease - enzymology</subject><subject>Structure-Activity Relationship</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9P2zAYhi0Egq5w3RHlgHZLZzt24hyrbqNIVCB-SNw8x_5CXCUx2MlG_vu5aiVO-y7v5XlffXoQ-krwguCCfd9WerHhuOBUUIyP0IxgkaUZJy_HaIYxJWlJuThDX0LY4nisJKfojORE5ISyGfr9OPhRD6OHxNXJeuxUn9w306B6N7Xpyi0Tmq4n493H1KoAyY2BfrC1hZBsXAt6bJVPNqAb1dvQhd3IA9Rh7JIfNkBsnKOTWrUBLg45R8-_fj6t1unt3fXNanmbalYUQ8qV5toQWguTgQIqWIkLoWuqDOWmKDhgqgBKoUzJqWIkw4YLnjNdAcvLKpujb_vdN-_eRwiD7GzQ0LaqBzcGmQuR80xkEVzsQe1dCB5q-eZtp_wkCZY7pzI6lZ9OY-HysDxWHZhP_CAxAld7oLGvzV_rQVbW6QY6SQWWrJSMEEwiJvYYRA1_LHgZtIVeg4kVPUjj7P9e-AcnopGG</recordid><startdate>20051209</startdate><enddate>20051209</enddate><creator>McDonough, Michael A.</creator><creator>Kavanagh, Kathryn L.</creator><creator>Butler, Danica</creator><creator>Searls, Timothy</creator><creator>Oppermann, Udo</creator><creator>Schofield, Christopher J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051209</creationdate><title>Structure of Human Phytanoyl-CoA 2-Hydroxylase Identifies Molecular Mechanisms of Refsum Disease</title><author>McDonough, Michael A. ; Kavanagh, Kathryn L. ; Butler, Danica ; Searls, Timothy ; Oppermann, Udo ; Schofield, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-5ac5cd12f8d3eae2849078cf2ad25d775e02aee98ad952a4130d58564cbe469b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aspartic Acid - metabolism</topic><topic>Binding Sites - genetics</topic><topic>Coenzyme A - metabolism</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Ferrous Compounds - metabolism</topic><topic>Histidine - metabolism</topic><topic>Humans</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Peroxisomes - enzymology</topic><topic>Phytanic Acid - analogs & derivatives</topic><topic>Phytanic Acid - metabolism</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins</topic><topic>Refsum Disease - drug therapy</topic><topic>Refsum Disease - enzymology</topic><topic>Structure-Activity Relationship</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonough, Michael A.</creatorcontrib><creatorcontrib>Kavanagh, Kathryn L.</creatorcontrib><creatorcontrib>Butler, Danica</creatorcontrib><creatorcontrib>Searls, Timothy</creatorcontrib><creatorcontrib>Oppermann, Udo</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonough, Michael A.</au><au>Kavanagh, Kathryn L.</au><au>Butler, Danica</au><au>Searls, Timothy</au><au>Oppermann, Udo</au><au>Schofield, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of Human Phytanoyl-CoA 2-Hydroxylase Identifies Molecular Mechanisms of Refsum Disease</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-12-09</date><risdate>2005</risdate><volume>280</volume><issue>49</issue><spage>41101</spage><epage>41110</epage><pages>41101-41110</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Refsum disease (RD), a neurological syndrome characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia, is caused by elevated levels of phytanic acid. Many cases of RD are associated with mutations in phytanoyl-CoA 2-hydroxylase (PAHX), an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the initial α-oxidation step in the degradation of phytenic acid in peroxisomes. We describe the x-ray crystallographic structure of PAHX to 2.5 Å resolution complexed with Fe(II) and 2OG and predict the molecular consequences of mutations causing RD. Like other 2OG oxygenases, PAHX possesses a double-stranded β-helix core, which supports three iron binding ligands (His175, Asp177, and His264); the 2-oxoacid group of 2OG binds to the Fe(II) in a bidentate manner. The manner in which PAHX binds to Fe(II) and 2OG together with the presence of a cysteine residue (Cys191) 6.7 Å from the Fe(II) and two further histidine residues (His155 and His281) at its active site distinguishes it from that of the other human 2OG oxygenase for which structures are available, factor inhibiting hypoxia-inducible factor. Of the 15 PAHX residues observed to be mutated in RD patients, 11 cluster in two distinct groups around the Fe(II) (Pro173, His175, Gln176, Asp177, and His220) and 2OG binding sites (Trp193, Glu197, Ile199, Gly204, Asn269, and Arg275). PAHX may be the first of a new subfamily of coenzyme A-binding 2OG oxygenases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16186124</pmid><doi>10.1074/jbc.M507528200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2005-12, Vol.280 (49), p.41101-41110 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_68865383 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Aspartic Acid - metabolism Binding Sites - genetics Coenzyme A - metabolism Crystallization Crystallography, X-Ray Cysteine - metabolism Escherichia coli - genetics Ferrous Compounds - metabolism Histidine - metabolism Humans Ketoglutaric Acids - metabolism Mixed Function Oxygenases - chemistry Mixed Function Oxygenases - genetics Models, Molecular Mutation Peroxisomes - enzymology Phytanic Acid - analogs & derivatives Phytanic Acid - metabolism Protein Binding Protein Structure, Secondary Recombinant Proteins Refsum Disease - drug therapy Refsum Disease - enzymology Structure-Activity Relationship Transfection |
title | Structure of Human Phytanoyl-CoA 2-Hydroxylase Identifies Molecular Mechanisms of Refsum Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20Human%20Phytanoyl-CoA%202-Hydroxylase%20Identifies%20Molecular%20Mechanisms%20of%20Refsum%20Disease&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=McDonough,%20Michael%20A.&rft.date=2005-12-09&rft.volume=280&rft.issue=49&rft.spage=41101&rft.epage=41110&rft.pages=41101-41110&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M507528200&rft_dat=%3Cproquest_cross%3E68865383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68865383&rft_id=info:pmid/16186124&rft_els_id=S0021925820590819&rfr_iscdi=true |