Biosoftening of coir fiber using selected microorganisms

Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2005-12, Vol.28 (3), p.165-173
Hauptverfasser: RAJAN, Akhila, SENAN, Resmi C, PAVITHRAN, C, EMILIA ABRAHAM, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 3
container_start_page 165
container_title Bioprocess and biosystems engineering
container_volume 28
creator RAJAN, Akhila
SENAN, Resmi C
PAVITHRAN, C
EMILIA ABRAHAM, T
description Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30+/-2 degrees C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6-44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.
doi_str_mv 10.1007/s00449-005-0023-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68859807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68859807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-864dac25141046a6cd5d79bfab82efd7a5dcc184ce569472a9029835a4e46ef93</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVJaVy3PyCXsBTa2zYz-tYxNUlbMPSSnIWslYzM7iqRvIf8-6yxg6GXHIYZhmdemIeQK4SfCKBuKgDnpgUQc1HW0g9kgRJFqySIi7dZGLwkn2vdAaDQFD6RS5SUApVqQfSvlGuO-zCmcdvk2PicShPTJpRmqoddDX3w-9A1Q_Il57J1Y6pD_UI-RtfX8PXUl-Tx_u5h9add__v9d3W7bj3Tat9qyTvnqUCOwKWTvhOdMpvoNpqG2CknOu9Rcx-ENFxRZ4AazYTjgcsQDVuSH8fcp5Kfp1D3dkjVh753Y8hTtVJrYTSod0E0BgVqNoPf_gN3eSrj_ISVyCigYYc0PELzz7WWEO1TSYMrLxbBHuTbo3w7y7cH-ZbON9en4GkzhO58cbI9A99PgKve9bG40ad65hQDikqzV0RAius</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613201937</pqid></control><display><type>article</type><title>Biosoftening of coir fiber using selected microorganisms</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>RAJAN, Akhila ; SENAN, Resmi C ; PAVITHRAN, C ; EMILIA ABRAHAM, T</creator><creatorcontrib>RAJAN, Akhila ; SENAN, Resmi C ; PAVITHRAN, C ; EMILIA ABRAHAM, T</creatorcontrib><description>Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30+/-2 degrees C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6-44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-005-0023-2</identifier><identifier>PMID: 16220267</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Bacteria ; Biological and medical sciences ; Biotechnology ; Cellulose ; Cocos - chemistry ; Cocos - ultrastructure ; Fibers ; Fundamental and applied biological sciences. Psychology ; Humic acids ; Microbiology ; Microorganisms ; Nuts - chemistry ; Nuts - ultrastructure ; Phanerochaete - growth &amp; development ; Phanerochaete - ultrastructure ; Phanerochaete chrysosporium ; Pseudomonas putida ; Pseudomonas putida - growth &amp; development ; Pseudomonas putida - ultrastructure ; Scanning electron microscopy</subject><ispartof>Bioprocess and biosystems engineering, 2005-12, Vol.28 (3), p.165-173</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-864dac25141046a6cd5d79bfab82efd7a5dcc184ce569472a9029835a4e46ef93</citedby><cites>FETCH-LOGICAL-c387t-864dac25141046a6cd5d79bfab82efd7a5dcc184ce569472a9029835a4e46ef93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17302178$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16220267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RAJAN, Akhila</creatorcontrib><creatorcontrib>SENAN, Resmi C</creatorcontrib><creatorcontrib>PAVITHRAN, C</creatorcontrib><creatorcontrib>EMILIA ABRAHAM, T</creatorcontrib><title>Biosoftening of coir fiber using selected microorganisms</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><description>Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30+/-2 degrees C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6-44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.</description><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cellulose</subject><subject>Cocos - chemistry</subject><subject>Cocos - ultrastructure</subject><subject>Fibers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humic acids</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nuts - chemistry</subject><subject>Nuts - ultrastructure</subject><subject>Phanerochaete - growth &amp; development</subject><subject>Phanerochaete - ultrastructure</subject><subject>Phanerochaete chrysosporium</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - growth &amp; development</subject><subject>Pseudomonas putida - ultrastructure</subject><subject>Scanning electron microscopy</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1rGzEQhkVJaVy3PyCXsBTa2zYz-tYxNUlbMPSSnIWslYzM7iqRvIf8-6yxg6GXHIYZhmdemIeQK4SfCKBuKgDnpgUQc1HW0g9kgRJFqySIi7dZGLwkn2vdAaDQFD6RS5SUApVqQfSvlGuO-zCmcdvk2PicShPTJpRmqoddDX3w-9A1Q_Il57J1Y6pD_UI-RtfX8PXUl-Tx_u5h9add__v9d3W7bj3Tat9qyTvnqUCOwKWTvhOdMpvoNpqG2CknOu9Rcx-ENFxRZ4AazYTjgcsQDVuSH8fcp5Kfp1D3dkjVh753Y8hTtVJrYTSod0E0BgVqNoPf_gN3eSrj_ISVyCigYYc0PELzz7WWEO1TSYMrLxbBHuTbo3w7y7cH-ZbON9en4GkzhO58cbI9A99PgKve9bG40ad65hQDikqzV0RAius</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>RAJAN, Akhila</creator><creator>SENAN, Resmi C</creator><creator>PAVITHRAN, C</creator><creator>EMILIA ABRAHAM, T</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>Biosoftening of coir fiber using selected microorganisms</title><author>RAJAN, Akhila ; SENAN, Resmi C ; PAVITHRAN, C ; EMILIA ABRAHAM, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-864dac25141046a6cd5d79bfab82efd7a5dcc184ce569472a9029835a4e46ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cellulose</topic><topic>Cocos - chemistry</topic><topic>Cocos - ultrastructure</topic><topic>Fibers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humic acids</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nuts - chemistry</topic><topic>Nuts - ultrastructure</topic><topic>Phanerochaete - growth &amp; development</topic><topic>Phanerochaete - ultrastructure</topic><topic>Phanerochaete chrysosporium</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - growth &amp; development</topic><topic>Pseudomonas putida - ultrastructure</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAJAN, Akhila</creatorcontrib><creatorcontrib>SENAN, Resmi C</creatorcontrib><creatorcontrib>PAVITHRAN, C</creatorcontrib><creatorcontrib>EMILIA ABRAHAM, T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAJAN, Akhila</au><au>SENAN, Resmi C</au><au>PAVITHRAN, C</au><au>EMILIA ABRAHAM, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosoftening of coir fiber using selected microorganisms</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>28</volume><issue>3</issue><spage>165</spage><epage>173</epage><pages>165-173</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30+/-2 degrees C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6-44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>16220267</pmid><doi>10.1007/s00449-005-0023-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2005-12, Vol.28 (3), p.165-173
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_68859807
source MEDLINE; SpringerNature Journals
subjects Bacteria
Biological and medical sciences
Biotechnology
Cellulose
Cocos - chemistry
Cocos - ultrastructure
Fibers
Fundamental and applied biological sciences. Psychology
Humic acids
Microbiology
Microorganisms
Nuts - chemistry
Nuts - ultrastructure
Phanerochaete - growth & development
Phanerochaete - ultrastructure
Phanerochaete chrysosporium
Pseudomonas putida
Pseudomonas putida - growth & development
Pseudomonas putida - ultrastructure
Scanning electron microscopy
title Biosoftening of coir fiber using selected microorganisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosoftening%20of%20coir%20fiber%20using%20selected%20microorganisms&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=RAJAN,%20Akhila&rft.date=2005-12-01&rft.volume=28&rft.issue=3&rft.spage=165&rft.epage=173&rft.pages=165-173&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-005-0023-2&rft_dat=%3Cproquest_cross%3E68859807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613201937&rft_id=info:pmid/16220267&rfr_iscdi=true