Glucose transporter 4: cycling, compartments and controversies
Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans‐Golgi network and vesicle‐associated pro...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2005-12, Vol.6 (12), p.1137-1142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1142 |
---|---|
container_issue | 12 |
container_start_page | 1137 |
container_title | EMBO reports |
container_volume | 6 |
creator | Dugani, Chandrasagar B Klip, Amira |
description | Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans‐Golgi network and vesicle‐associated protein 2‐containing vesicles. The coordinated action of phosphatidylinositol 3‐kinase effectors, protein kinase Akt, atypical protein kinase C (aPKC) and Akt substrate of 160‐kDa (AS160), regulates the GLUT4 cycle by affecting its translocation, fusion with the plasma membrane, internalization and sorting. We review the evidence that supports such cycling, evaluate current models proposing static or dynamic retention, and highlight how distinct steps of GLUT4 transport are regulated by insulin signals. In particular, fusion seems to be regulated by aPKC (via munc18) and Akt (via syntaxin4‐interacting protein (synip)). AS160 participates in GLUT4 intracellular retention, and possibly fusion, through candidate ras‐related GTP‐binding protein (Rab)2, Rab8, Rab10 and/or Rab14. The localization of the insulin‐sensitive GLUT4 compartment and the precise target of insulin‐derived signals remain open for future investigation. |
doi_str_mv | 10.1038/sj.embor.7400584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68857112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>967865221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4164-5b8ac823b1fe0ed1d433d114fa649163c06baf95e6e72e7b406daa55601be6313</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMoPkb3bpTiwpUdk-bRxIWgwzgKPkBHFDchbe9Ixz7GpFXn3xudquDqXu75zuVwENomuE8wlYdu2ocyqW0_ZhhzyZbQOmFChZTEcrnbo4g8rqEN56bYMyqWq2iNCEqU4modHY-KNq0dBI01lZvVtgEbsKMgnadFXj0fBGldzoxtSqgaF5gq84eqsfUbWJeD20QrE1M42OpmD92fDceD8_DyZnQxOLkMU0YEC3kiTSojmpAJYMhIxijNCGETI5jyYVIsEjNRHATEEcQJwyIzhnOBSQI-K-2h_cXfma1fW3CNLnOXQlGYCurWaSEljwmJPLj3D5zWra18Nh1hySPqC_DQbge1SQmZntm8NHauf2rxgFoA73kB8z8d66_atZvq79p1V7seXp3edrv37iy8lWlaC7_mPz1c6Llr4ONXNvZFi5jGXD9cjzQdj9Tg6epOU_oJr-iPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208523978</pqid></control><display><type>article</type><title>Glucose transporter 4: cycling, compartments and controversies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>PubMed Central</source><creator>Dugani, Chandrasagar B ; Klip, Amira</creator><creatorcontrib>Dugani, Chandrasagar B ; Klip, Amira</creatorcontrib><description>Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans‐Golgi network and vesicle‐associated protein 2‐containing vesicles. The coordinated action of phosphatidylinositol 3‐kinase effectors, protein kinase Akt, atypical protein kinase C (aPKC) and Akt substrate of 160‐kDa (AS160), regulates the GLUT4 cycle by affecting its translocation, fusion with the plasma membrane, internalization and sorting. We review the evidence that supports such cycling, evaluate current models proposing static or dynamic retention, and highlight how distinct steps of GLUT4 transport are regulated by insulin signals. In particular, fusion seems to be regulated by aPKC (via munc18) and Akt (via syntaxin4‐interacting protein (synip)). AS160 participates in GLUT4 intracellular retention, and possibly fusion, through candidate ras‐related GTP‐binding protein (Rab)2, Rab8, Rab10 and/or Rab14. The localization of the insulin‐sensitive GLUT4 compartment and the precise target of insulin‐derived signals remain open for future investigation.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/sj.embor.7400584</identifier><identifier>PMID: 16319959</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adipose tissue ; Diabetes Mellitus, Type 2 - metabolism ; Glucose - metabolism ; Glucose Transporter Type 4 - metabolism ; glucose uptake ; GLUT4 compartments ; GLUT4 traffic ; Humans ; Insulin ; Insulin - metabolism ; insulin signalling ; Models, Biological ; Protein Transport ; Retention ; Translocation ; type 2 diabetes mellitus</subject><ispartof>EMBO reports, 2005-12, Vol.6 (12), p.1137-1142</ispartof><rights>Copyright © 2005 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Dec 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4164-5b8ac823b1fe0ed1d433d114fa649163c06baf95e6e72e7b406daa55601be6313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1038%2Fsj.embor.7400584$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1038%2Fsj.embor.7400584$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16319959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dugani, Chandrasagar B</creatorcontrib><creatorcontrib>Klip, Amira</creatorcontrib><title>Glucose transporter 4: cycling, compartments and controversies</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><description>Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans‐Golgi network and vesicle‐associated protein 2‐containing vesicles. The coordinated action of phosphatidylinositol 3‐kinase effectors, protein kinase Akt, atypical protein kinase C (aPKC) and Akt substrate of 160‐kDa (AS160), regulates the GLUT4 cycle by affecting its translocation, fusion with the plasma membrane, internalization and sorting. We review the evidence that supports such cycling, evaluate current models proposing static or dynamic retention, and highlight how distinct steps of GLUT4 transport are regulated by insulin signals. In particular, fusion seems to be regulated by aPKC (via munc18) and Akt (via syntaxin4‐interacting protein (synip)). AS160 participates in GLUT4 intracellular retention, and possibly fusion, through candidate ras‐related GTP‐binding protein (Rab)2, Rab8, Rab10 and/or Rab14. The localization of the insulin‐sensitive GLUT4 compartment and the precise target of insulin‐derived signals remain open for future investigation.</description><subject>Adipose tissue</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Glucose - metabolism</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>glucose uptake</subject><subject>GLUT4 compartments</subject><subject>GLUT4 traffic</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>insulin signalling</subject><subject>Models, Biological</subject><subject>Protein Transport</subject><subject>Retention</subject><subject>Translocation</subject><subject>type 2 diabetes mellitus</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLxDAUhYMoPkb3bpTiwpUdk-bRxIWgwzgKPkBHFDchbe9Ixz7GpFXn3xudquDqXu75zuVwENomuE8wlYdu2ocyqW0_ZhhzyZbQOmFChZTEcrnbo4g8rqEN56bYMyqWq2iNCEqU4modHY-KNq0dBI01lZvVtgEbsKMgnadFXj0fBGldzoxtSqgaF5gq84eqsfUbWJeD20QrE1M42OpmD92fDceD8_DyZnQxOLkMU0YEC3kiTSojmpAJYMhIxijNCGETI5jyYVIsEjNRHATEEcQJwyIzhnOBSQI-K-2h_cXfma1fW3CNLnOXQlGYCurWaSEljwmJPLj3D5zWra18Nh1hySPqC_DQbge1SQmZntm8NHauf2rxgFoA73kB8z8d66_atZvq79p1V7seXp3edrv37iy8lWlaC7_mPz1c6Llr4ONXNvZFi5jGXD9cjzQdj9Tg6epOU_oJr-iPvQ</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Dugani, Chandrasagar B</creator><creator>Klip, Amira</creator><general>John Wiley & Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Glucose transporter 4: cycling, compartments and controversies</title><author>Dugani, Chandrasagar B ; Klip, Amira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4164-5b8ac823b1fe0ed1d433d114fa649163c06baf95e6e72e7b406daa55601be6313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adipose tissue</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Glucose - metabolism</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>glucose uptake</topic><topic>GLUT4 compartments</topic><topic>GLUT4 traffic</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>insulin signalling</topic><topic>Models, Biological</topic><topic>Protein Transport</topic><topic>Retention</topic><topic>Translocation</topic><topic>type 2 diabetes mellitus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dugani, Chandrasagar B</creatorcontrib><creatorcontrib>Klip, Amira</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dugani, Chandrasagar B</au><au>Klip, Amira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose transporter 4: cycling, compartments and controversies</atitle><jtitle>EMBO reports</jtitle><addtitle>EMBO Rep</addtitle><date>2005-12</date><risdate>2005</risdate><volume>6</volume><issue>12</issue><spage>1137</spage><epage>1142</epage><pages>1137-1142</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans‐Golgi network and vesicle‐associated protein 2‐containing vesicles. The coordinated action of phosphatidylinositol 3‐kinase effectors, protein kinase Akt, atypical protein kinase C (aPKC) and Akt substrate of 160‐kDa (AS160), regulates the GLUT4 cycle by affecting its translocation, fusion with the plasma membrane, internalization and sorting. We review the evidence that supports such cycling, evaluate current models proposing static or dynamic retention, and highlight how distinct steps of GLUT4 transport are regulated by insulin signals. In particular, fusion seems to be regulated by aPKC (via munc18) and Akt (via syntaxin4‐interacting protein (synip)). AS160 participates in GLUT4 intracellular retention, and possibly fusion, through candidate ras‐related GTP‐binding protein (Rab)2, Rab8, Rab10 and/or Rab14. The localization of the insulin‐sensitive GLUT4 compartment and the precise target of insulin‐derived signals remain open for future investigation.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>16319959</pmid><doi>10.1038/sj.embor.7400584</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2005-12, Vol.6 (12), p.1137-1142 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_proquest_miscellaneous_68857112 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content; PubMed Central |
subjects | Adipose tissue Diabetes Mellitus, Type 2 - metabolism Glucose - metabolism Glucose Transporter Type 4 - metabolism glucose uptake GLUT4 compartments GLUT4 traffic Humans Insulin Insulin - metabolism insulin signalling Models, Biological Protein Transport Retention Translocation type 2 diabetes mellitus |
title | Glucose transporter 4: cycling, compartments and controversies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20transporter%204:%20cycling,%20compartments%20and%20controversies&rft.jtitle=EMBO%20reports&rft.au=Dugani,%20Chandrasagar%20B&rft.date=2005-12&rft.volume=6&rft.issue=12&rft.spage=1137&rft.epage=1142&rft.pages=1137-1142&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1038/sj.embor.7400584&rft_dat=%3Cproquest_pubme%3E967865221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208523978&rft_id=info:pmid/16319959&rfr_iscdi=true |